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Executive Summary

Data marketplaces enable data owners to exchange and exploit their data sets. As the
data sets might contain sensitive data, the owners might be reluctanct to actually share
their data. When the data contains privacy-sensitive information, legal frameworks even
forbid them simply sharing them in plain. Modern cryptographic tools including secure
multiparty computation or homomorphic encryption can help to leviate that reluctancy
and overcome the obstacle imposed by legal frameworks. These methods ensure that
the confidentiality of the data is ensured even if results of some computation on them is
revealed to interested customers up to a degree that could also be derived from the result.

Before deploying a system enabling multiple data owners to exploit their data sets
while at the same time ensure the confidentiality of these sets, it is of paramout importance
to define 1. the desired functionality, 2. who provides input data, 3. who participates in
the computation, and finally 4. who defines the results. As these base parameters will
later determine the possibles choices of efficient protocols, the use-cases of Safe-DEED
will depend on setting them correctly. To help the use-case domain experts to select the
suitable setting and parameters, we describe possible scenarios and extend these scenarios
with examples.
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1 Introduction

“Big data” became a promising and valuable resource in the last decade. In some in-
stances, data is now considered even more valuable than oil as captured by “data is the
new oil” analogy [Eco17], which appeared in research, technology, and business. Devel-
oping data marketplaces goes a step further and enable customers to share and capitalize
their data sets. Yet, these data marketplaces will only take off if users are willing to share
data assets. Often, the benefits and costs of data sharing are not aligned between actors:
while one actor gains from the data sharing another only bears privacy or confidentiality
threats. Thus, to incentivize data sharing, we need to boost user willingness to share
data, e.g. by increasing the trust in data marketplaces. One of the goals of Safe-DEED
is to build cryptographically secure methods to enable data owners to capitalize on their
data sets without running into privacy or confidentiality issues.

In the cryptographic literature two main lines of work consider privacy- and confident-
iality-preserving computations on data sets which are of particular interest for Safe-DEED:
secure multiparty computation (MPC) and homomorphic encryption. On a high level,
secure multiparty computation allows data owners to benefit from computing on the data
while still retaining the secrecy of the data. In general, the idea of multiparty computation
applies to any scenario where data owners would send their input data to a trusted third
party to compute the result based on all data sets and then obtain the result from the
trusted third party. With MPC, such a trusted third party, that would learn all input
data, can be replaced by an MPC protocol. Thereby the need to trust an additionally
party can be removed completely. At the same time, the same security guarantee should
be achieved: the parties should only be able to learn the result of the computation as in
the case where they would send the data to a trusted third party. This power of MPC
protocols make them an ideal candidate for leveraging it for secure computations for data
markets. MPC protocols also fit scenarios where legislation prohibits the combination of
the plaintext data due to privacy concerns [BKL+14].

Besides defining the desired functionality, desired inputs, and results for an MPC-based
system, one of the main obstacles to deploy such systems from a technical perspective
is the choice of a suitable protocol. While we know of the theoretical existence, finding
efficient protocols for a specific functionality is a highly non-trivial task. Related to the
choice of functionality and the protocol, an important question to answer is also which
parties are in the end performing the computations. If, for example, all nodes performing
any of the operations are deployed on a single cloud service, the use of an MPC protocol
may only give a false sense of security. The confidentiality and privacy of the data in
such a protocol relies to some extent on the assumption that at least some parties do
not collaborate by combining their inputs or deviate from the protocol. In other words,
designing the topology of the system is paramount to obtain any security guarantees.

For more specialized settings, less general approaches based on, e.g., homomorphic
encryption can be a suitable alternative. In particular, it offers interesting opportunities
when the parties involved in the computation and the receiver of the results are distinct
anyway [GDL+16; DRS17]. While this setting naturally occurs when one is interested in
outsourcing computations to, say, a computationally more powerful cloud service provider,
it is also applicable to the data marketplace. For example, the input providers and
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receiver of result would be customers whereas the data market could additionally offer
computational power.

As for the approaches based on MPC, defining the functionality is important to select
a suitable scheme for homomorphic encryption based solutions. Similarly, inputs, results
and involved parties need to be defined clearly. Consequently, we lay out requirements
that cover these basic constraints that need to be fixed. Only after this step, one can look
at schemes and protocols that efficiently implement the desired functionality.

In this deliverable, we discuss the different settings for MPC and the special cases
where homomorphic encryption can be applied. In Section 2 we will discuss aspects of
multiparty computation. In Section 2.1 we will introduce a somewhat more formal notion,
and introduce the central security aspect – the “real-ideal” paradigm – in Section 2.2. We
conclude this section with a discussion of different models in Section 2.3, whereas we
distinguish them based on the roles of the involved parties. Finally, in Section 3 we will
discuss homomorphic encryption schemes and their suitability for some of the presented
scenarios. In Section 4 we re-state the derived requirements and conclude this deliverable.

Target Audience. This deliverable is targeted towards software engineers and re-
searchers working with large data sets. As such we require some computer science back-
ground for the general discussion of the topics. For an excellent introduction on some of
the more technical details, we refer to the book of Smart [Sma16].

1.1 Notation

Notation-wise, we use the following conventions. We let κ ∈ N be the security parameter.
To sample from a set S uniformly at random, we write x←R S. For an algorithm A, let
y ← A(1κ, x) be the process of running A, on input 1κ and x, with access to uniformly
random coins and assigning the result to y. We assume that all algorithms take 1κ as
input and we will sometimes omit to make this explicit. For an probabilistic algorithm A,
we make the random coins r explicit by writing A(1κ, x; r). An algorithm A is probabilistic
polynomial time (PPT) if its running time is polynomially bounded in κ. In this case
we also say that A is efficient. We use calligraphic letters, e.g., A, for the algorithms
representing adversaries in the security games. A function f : N→ R≥0 is negligible if

∀c∃κ0 ∀κ ≥ κ0 : f(κ) ≤ 1

κc
.

2 Multi-Party Computation

The aim of MPC is to enable a group of participants P1, . . . , Pn to jointly compute an
agreed-upon function without revealing their private input (x1, . . . , xn) to the other par-
ticipants. Once the group has agreed on a function f which they want to compute, MPC
is best described in an idealized world. In this ideal world, all participating parties send
their inputs to a trusted third party T , e.g., a notary. The trusted third party then com-
putes the result f(x1, . . . , xn) and sends the result to the intended receivers as depicted
in Figure 1. Since in the real world there is no third party taht all participants fully trust
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this ideal world does not exist. The goal of MPC protocols is that they can simulate the
functionality given by T with essentially the same security as in the ideal world.

Trusted Third Party

T V
GC

Customer Data Result Customer DataResult

(a) Data owners provide their
data to a trusted third party.
This party computes the desired
functionality on the data and re-
turns it to the data owners.

T V

MPC

GC

Result

(b) Data owners perform an
MPC protocol to obtain the same
result without the need to involve
an additional trusted party.

Figure 1: From computation of a functionality in an ideal world involving a
completely trusted third party to the real world implementation without such
a third party.

To implement an MPC protocol in practice, we have to first define the functionality
in the ideal world. This includes the number of parties and their input, the output
including who should receive the output, the security model and the performance metric.
However, it requires domain knowledge of the desired functionality to complete this task.
Depending on the description in the ideal world one chooses either a generic MPC protocol
or a custom built protocol to perform the defined function without a trusted third party.

2.1 Definitions and Notations

Historically, cryptography was mainly concerned with concealing the content of com-
munication against an adversary outside of the system. With the question if it would be
possible to play a fair game of “mental poker”, attributed to Floyd [SRA81], the paradigm
changed to also consider adversaries internal to a system. Mental poker is played just like
traditional poker, except that there are no cards. Instead, the game is realized (including
shuffling, dealing, ...) by only sending messages between the player, but without any
trusted third parties. In 1979 Shamir et al. [SRA81] examined whether it is possible to
play a fair game of mental poker and presented the first scheme realizing this functionality.

In 1982, Yao [Yao82] formalized the first protocol, in which two mutually suspecting
parties try to compute a function on their private input data, as for example in mental
poker or coin flipping over the telephone [Blu81]. In a seminal paper in 1987, Goldreich
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et al. [GMW87] generalized secure computation protocols to the multi-party case. A
modern way to define secure multi-party computation (MPC) following the one given by
Cramer et al. [CDN15] is:

Definition 1 (Multi-Party Computation). Let P1, . . . , Pn be n parties in the computation,
for n ≥ 2. For each party Pi let Xi be the domain of input values (private) and Yi an
arbitrary set. The n parties agree on a function

f : X1 × · · · ×Xn −→ Y1 × · · · × Yn.

Further, let (x1, . . . , xn) ∈ X1 × · · · ×Xn be the private input vector of the participating
parties P1, . . . Pn. Then their goal is to compute (y1, . . . , yn) = f(x1, . . . , xn) such that
the following properties are satisfied

• Correctness: the correct value (y1, . . . , yn) is computed

• Privacy: yi is the only new information that the party Pi gets.

In practice and also for simplicity we often consider the case where y1 = . . . yn, i.e., there
is only a single output, which is the same for every party.

Example 1. Let P1, P2, P3 and P4 be four groceries stores of the same company. They all
have a certain amount x1, x2, x3, x4 ∈ N of oranges in stock. Their goal is to compute the
aggregated amount of oranges without revealing the exact amount of their store. Then f
can be defined in the following way

f : N× N× N× N −→ N
(x1, x2, x3, x4) 7−→ x1 + x2 + x3 + x4.

We can see that every store gets the new information y1 = . . . yn = x1 + x2 + x3 + x4, the
total amount of oranges. But none of the stores learns the exact amount of a different
store.

Back in the 1980s, MPC was merely of academic interest. This fact did not change
over the following 20 years. In the late 2000s the combination of higher computing power
and algorithmic improvements lead to the first large scale commercial deployment of
an MPC protocol. In Denmark researchers, the government, and stakeholders launched
an auction platform for sugar beets [BCD+09]. In recent years, MPC found more and
more applications in practice, as illustrated in a study conducted on Estonian students,
where MPC techniques made it legally possible to perform data analysis across different
ministries [Cyb15].

2.2 Security of MPC

From the early days, many efforts by the cryptographic community have been devoted
to finding a general definition for secure multi-party computation [Gol97]. Since the
applications of MPC range from electronic voting systems to joint database computations
to secure machine learning, it is difficult to come up with a definition for the security of
MPC, which covers the properties of all the possible forms of MPC. For this reason, the
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conventional approach, known from other areas of cryptography, of writing down specific
requirements for a protocol turned out to be not applicable for MPC. Instead, the real-
ideal paradigm prevailed as the concept that captures the notion of security for MPC
protocols best.

Definition 2 (Real-Ideal paradigm). In the ideal world all parties P1, . . . Pn send their
encrypted inputs (Enc(pkT , x1), . . . ,Enc(pkT , xn)) to a trusted third party T . Then T
computes the function f on the decrypted input values

f(x1, . . . , xn) = (y1, . . . , yn).

Every party Pi receives their encrypted output Enc(pkPi
, yi). In the real world we remove

the trusted third party T . Instead all parties P1, . . . , Pn communicate with each other
using a protocol π to compute f . We say π securely realizes f if one can not distinguish
the output of the protocol π and the output of a corresponding simulation in the ideal
world.

A more formal way of describing what security means in the context of MPC is given
by Evans et al. [EKR18], and a rigorous information theoretic approach can be found in
[CDN15].

2.2.1 Security Models

In the following section we discuss semi-honest and malicious security of MPC protocols.
Additionally, we cover the limits for the number of corrupted parties participating in an
MPC protocol whereas security can still be guaranteed.

Semi-Honest. In the semi-honest (or honest-but-curious) security model, we assume
that every party P1, . . . , Pn follows the specified protocol. However, there can exist a
subset C ⊂ {P1, . . . , Pn} of corrupted parties which are interested in the private input of
other parties. Those corrupt parties are also called adversaries. They, for example, are
allowed to collaborate by combining their input data to get information about the private
input of non-corrupt parties.

The performance of semi-honest protocols is generally very good. Unfortunately, in
many real-world applications, we can not guarantee that all parties follow the protocol.
Hence we need a stronger security model dealing with adversaries which are not bound
to the protocol.

Malicious Security. In the malicious security model, a corrupt subset C ⊂ {P1, . . . ,
Pn} is no longer required to follow the protocol by the letter. Corrupted parties may
deviate from the protocol. In particular, a malicious party can send incorrect data to
other parties or abort at any desired point in time. As in the semi-honest model, the
corrupt subset can collude to violate the security of the protocol. Due to the flexibility
of the adversary, the malicious protocols have to be more robust which usually translates
to worse performance characteristics compared to protocol that are only secure in the
semi-honest model.
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Theoretical Limits Obviously, no meaningful security model can allow the number
of corrupt parties equal the total number of parties. So we see that there are limits
to the size of the group of corrupted parties independent of the specific protocol. More
concretely, let P1, . . . , Pn be the parties participating in a given MPC protocol. Then there
is a theoretical limit, depending on the security model and the computational power of
the adversaries, on the number of parties whose corruption can be tolerated [BGW88;
CFG+96; CCD88; GMW87]. The limits are summarized in Table 1.

computationally unbounded computationally bounded

semi-honest ≤ n/2 ≤ n− 1
malicious ≤ n/3 ≤ n/2

Table 1: Limits on number of corrupted parties for MPC protocols involving
n parties.

Once these limits are exceeded, there does not exist a protocol which guarantees the
privacy of the inputs or the correctness of the computation. Hence, if the assumed trust
model implies that the number of corrupt parties is higher than the theoretical limits
performing multiparty computation can be harmful to the honest parties. In the special
case of two-party computation, i.e. n = 2, the limits imply that in the presence of a
computationally bounded malicious adversary can be tolerated. Indeed, Yao’s garbled
circuits can be lifted from the semi-honest setting to the malicious setting [LP07].

2.3 Basic Computational Models

In this section, we discuss different multiparty computation scenarios we denote as ba-
sic computational models. We will distinguish between parties that provide input data
(), perform computations (3) and receive outputs (!). We assume that all partici-
pating parties are connected by a secure channel, i.e., the channel provides end-to-end
confidentiality for example provided by TLS [Res18].

The discussion follows the classification of Bogdanov et al. [BKL+14], but we attach
names to the models that make sense in the context of Safe-DEED. For each model, we
also provide an example where the distribution of roles fits into the Safe-DEED context.
We also provide references to applications of these models in the literature.

2.3.1 Classic

In the most basic case, all parties provide inputs, are an active part of the computation,
and obtain the result in the end. Figure 2 depicts this scenario. One of the first application
in this setting is Yao’s millionaires’ problem [Yao82]. An example of recent work includes
private set intersection protocols [PSS+09; PSZ18].

Example 2. Imagine a manufacturer who wants to sell a large quantity of a product to
different customers. The unit price is not fixed. Instead, it depends amongst other things
on the requested quantity and wish delivery date from the customers. Hence the price
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 3 !

 3 !  3 !

MPC

Figure 2: Classic: All parties provide input, play an active role in the protocol
and receive results.

finding process is a highly interactive one, where every participant is interested in disclos-
ing only as much information as necessary. This can be accomplished by transforming the
price finding algorithm into an MPC protocol. By performing the correct MPC protocol
in the end, each customer only knows his order but has not gained any information about
other customers or the currently available quantity of the manufacturer. On the other
hand, the manufacturer gets the order of each customer, but not the exact price range at
which the customers would still be willing to buy the product.

Input: manufacturer: current quantity, possible delivery dates, price range; customer:
demand, wish date, price range

Computation: customers and manufacturer

Result: manufacturer: all orders; customer: own order

2.3.2 Outsourcing

In this setting, the data owners provide the data and receive the results. The computations
are performed by dedicated computations notes. Figure 4 depicts this scenario. Since the
discovery of fully homomorphic encryption [Gen09b], this model is widely used, as for
example by Gilad-Bachrach et al. [GDL+16].

Example 3. A small-size company may have a lot of data and even an idea of how to
analyze it. However, it does not possess the computing power to run data analysis algo-
rithms. One way to solve this issue would be to outsource the computational task to a
powerful server on the cloud. Naively doing this (without privacy enhancing techniques)
can raise two major problems. If the data contains customer information, sending it with-
out protection to a cloud operator could violate the GDPR and thus be illegal. On the
other hand, if we are dealing with business figures, it is doubtful that the company is
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manufacturer

 3 !

 3 !
customer A

 3 !
customer B

MPC

Figure 3: Classic: the manufacturer and the customers, play an active role in
the protocol and receive results.

 !

 !

3

3

3

MPC

Figure 4: Outsourcing: Computations are outsourced to dedicated parties.

willing to give this sensitive data to a cloud company. To remove both constraints and
therefore enable the small-size company to benefit from big data analytics, their sensitive
data could be protected by means of MPC before transmitting it to the cloud. If this is
done properly, the cloud operator would learn nothing about the private information of
the small-size company or their customers.

Input: small-size company: data that should be analysed together with corresponding
algorithm

Computing: cloud operator

Result: small-size company

2.3.3 Reporting

In this special situation, the data providers also perform the computation. The results
are then received by a dedicated note. Figure 5 depicts this scenario. The studies on
linked databases [BKL+14] demonstrate how useful this setting can be.
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 3

 3  3

!MPC

Figure 5: Reporting: Parties provide inputs and perform computation, a
dedicated party receives the results.

Example 4. A federation of the industry, e.g. the Confederation of European Business,
would like to perform some analysis of the business indicators of its members. A prerequi-
site for the analysis is that every member discloses its business metrics to the federation.
Even though the different entrepreneurs decided to work together within the frame of an
organization, they are still competitors and thus are afraid to share their business key
figures. A way around would be that all members take part in an MPC protocol which
performs the analysis of the desired business indicators. The result is then send to the
federation. There is no leakage of information to any party, i.e. neither to the other
members nor to the organization.

Input: members of the federation: business figures

Computing: all members of the federation

Result: federation

2.3.4 Machine Learning

In this model, every party acts as a data provider and gets results. One of the party
does not perform any computation. Figure 7 depicts this scenario. Examples, where this
model has been applied, include various machine learning applications [RSC+19; LJL+17;
BIK+17].

Example 5. Consider an example where an innovative data mining startup has developed
its own neural network for a specific task. There are two traditional business models
for the startup. First they could sell their neural network program to companies. The
drawback is that a rival data mining company could buy the program and easily reverse
engineer the parameters of the neural network and thus eliminate the technical advantage
of the startup. To prevent this and protect the inner workings of the neural network
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member A

 3

 3
menber B

 3
member C

federation

!MPC

Figure 6: Reporting: three members provide input and perform computation,
the federation receives the results.

 3 !

 3 !

 !MPC

Figure 7: Machine learning: All parties provide input and receive results, a
dedicated party must not perform any computation

the startup does not give away the program, instead it receives the data which should
be analysed and sends the result back to the customer. However, now the customer
presumably has concerns, namely with the forwarding of her data to the startup. MPC
can help us to find a way out of the dilemma. By methods of cryptography the customer
could transmit its data to the servers of the startup without giving away any information.
In the end the customer gets the result of the computation and the startup can update
its neural network.

Input: startup: neural network model; customer: data which should be analysed

Computing: startup

Result: customer: computed value; startup: updated neural network model
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2.3.5 Consulting

In this case, we have a party only providing input. A dedicated party gets the results,
takes part in the computation and sometimes also acts as a data provider. There are
additional computing notes. Figure 8 depicts this scenario. This model was used to do
financial reporting in a consortium [BTW12].



3

3

()3 !MPC

Figure 8: Consulting: A dedicated data provider, a dedicated party receives
the output and is also a part of the computation, several computation notes

Example 6. One possible use-case for the consulting model is the following. A bank hires a
consulting firm and in order to advice the bank properly the consulting firm has to perform
data analysis on the bank’s internal data. Despite a certain level of trust between the
two parties, the bank understandably is not willing to disclose all its information. Now
the idea could be that the consulting firm gives away the analyzing tool to the bank. The
bank then internally runs the tool and reports back the results. At first glance, there
is nothing wrong with this approach since it is in the sake of the bank’s own interest to
correctly report the results. Under further considerations, we see that the algorithms in
this tool are part of the business secret of the consulting firm. Hence giving away the tool
without protection is no favorable option for the consulting firm. In the ideal scenario,
the analyses are performed without leaking any information besides the results. Exactly
this can be accomplished if an MPC protocol is used. To guarantee the security one needs
two additional parties for the computation, they have no input and receive no output.

Input: bank: internal data

Computing: consulting firm, two additionally parties

Result: consulting firm

2.3.6 Aggregation

A variant of the outsourcing scenario discussed in Section 2.3.2 is depicted in Figure 9.
In this case, the parties providing the input data and the result of the computation is
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distinct. An example includes the aggregation of sensor data as outlined by Derler et
al. [DRS17] which discuss in more detail below.





3

3 3

!MPC

Figure 9: Aggregation: Data owners provide data to computation nodes,
which provide the result to a dedicated receiver.

Example 7. Assume a setting where n senders, e.g., sensor nodes, regularly report data
to some entity denoted the receiver. The avoid computation on the receiver side, it is
outsourced to an aggregator. The aggregator collects the data and then reports compu-
tations on these data to the receiver. For example, consider environmental monitoring
in a so-called “smart home”. The sensor data is analyzed by the aggregator and then
forwarded that to a device, e.g., a smartphone, controlled by the owner of the sensors.

Input: sensors: environmental data

Computation: cloud providers

Result: data owner: aggregated data and its analysis

3 Homomorphic Encryption

Public-key encryption schemes usually ensure that any modification of the ciphertext is
detected. To securely perform computations on encrypted data, this restriction needs
to be lifted to some extent. In particular, we want to enable the computation of a
class of functions by evaluating them on ciphertexts. Thereby it is possible to outsource
computations to a third party, e.g. a cloud service. Shortly after the publication of
RSA [RSA78], the possibility to compute on encrypted data was deemed interesting for
applications [RAD+78]. In this case however – as long as the encryption scheme is secure –
no additional trust assumptions have to be placed on the third party to keep the encrypted
data confidential.

The class of public-key encryption schemes that allow others to perform computation
on the encryption plaintext is called homomorphic encryption. To perform computa-
tions in this context, only the ciphertexts need to be known. Depending on the type of
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computable function, schemes can be classified as linearly homomorphic,1 multiplicatively
homomorphic, fully homomorphic (i.e., linearly and multiplicatively homomorphic), or
somewhat homomorphic (i.e., fully homomorphic for a limited number of operations).

However, we note that homomorphic encryption schemes only enable the evaluation
of functions on ciphertexts that were encrypted with respect to the same public key. As
a consequence, the resulting ciphertext is also encrypted with respect to the same public
key. Thus, homomorphic encryption directly used as a basis to obtain secure computation
on data of multiple owners only applies to a certain scenario. All of the data owners
contribute their data, and a designated party receives the result, and the computation
itself is outsourced to a computation party. In that case, the data owners would encrypt
their data with respect to the public key of the receiver. As long as the designated party
does not obtain the individual ciphertexts, but only obtains the encrypted result, the
confidentiality of the inputs is still guaranteed. However, if the designated receiver would
obtain any of the input ciphertexts, they could be decrypted as well.

3.1 Definitions and Notations

A F -homomorphic public key encryption (HPKE) scheme is a public-key encryption
scheme that is homomorphic with respect to a class of functions F , i.e., given a sequence
of ciphertexts to messages (mi)i∈[n] one can evaluate a function f : Mn →M ∈ F on the
ciphertexts such that the resulting ciphertext decrypts to f(m1, . . . ,mn). More formally,
we define it as follows:

Definition 3 ((F -)HPKE). A F -homomorphic public key encryption (F -HPKE or HPKE
for short) scheme with message space M, ciphertext space C and a function family F
consists of the PPT algorithms (Gen,Enc,Dec,Eval):

Gen(1κ) : On input security parameter κ, outputs public and secret keys (pk, sk).

Enc(pk,m) : On input a public key pk, and a message m ∈ M, outputs a ciphertext
c ∈ C.

Dec(sk, c) : On input a secret key sk, and ciphertext c, outputs a message m ∈M or, in
case of a failure, the error symbol ⊥.

Eval(f, (ci)i∈[n]) : On input a function f : Mn → M ∈ F , a sequence of ciphertexts
(ci)i∈[n] encrypted under the same public key, outputs a ciphertext c.

For correctness we require the standard correctness of public-key encryption schemes:
if for all κ ∈ N, for all (sk, pk)← Gen(1κ) and for all m ∈M it holds that

Pr[Dec(sk,Enc(pk,m)) = m] = 1,

then HPKE is perfectly correct. More importantly, we further require for the correctness
of HPKE that for all security parameters κ ∈ N, all key pairs (pk, sk) ← Gen(1κ), all

1We want to note, that for linearly homomorphic schemes with a ring structure on the message space,
transformations to somewhat homomorphic schemes exist [CF15].
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functions f : Mn →M ∈ F , all message sequences (mi)i∈[n] it holds that

Pr
î
Dec
Ä
sk,Eval

Ä
f, (Enc(pk,mi))i∈[n]

ää
= f(m1, . . . ,mn)

ó
= 1.

For the security of homomorphic public-key encryption schemes, we require the typical
indistinguishability security notions of public-key encryption. This notion ensures that
the ciphertexts do not leak any information on the encrypted plaintexts. The goal is to
achieve the same security notion also in the case of homomorphic encryption, i.e., adding
the Eval algorithm does not change anything regarding the security of a scheme. More
formally, indistinguishability under chosen message attacks (IND-CPA security) requires
that an adversary A cannot decide which message is actually contained in a ciphertext c
even when allowed to choose two challenge messages m0 and m1.

Definition 4 (IND-CPA). For a PPT adversary A, we define the advantage function in the
sense of indistinguishability under chosen message attacks (IND-CPA) as

Advind-cpaA,HPKE(κ) =

∣∣∣∣Pr
î
Expind-cpaA,HPKE(κ) = 1

ó
− 1

2

∣∣∣∣,
where the corresponding experiment is depicted in Experiment 1. If for all PPT adver-
saries A there is a negligible function ε(·) such that

Advind-cpaA,HPKE(κ) ≤ ε(κ),

then HPKE is IND-CPA secure.

Expind-cpaA,HPKE(κ):

(sk, pk)← KGen(1κ)

b←R {0, 1}
(m0,m1, st)← A(pk)

c∗ ← Enc(pk,mb)

b∗ ← A(c∗, st)

return 1, if b∗ = b

return 0

Experiment 1: IND-CPA security experiment for (homomorphic) public-key
encryption.

If a stronger notion of indistinguishability is required, the adversary can be given
access to the decryption oracle before selecting the challenge ciphertext. That is, we can
define the first variant of indistinguishability under chosen ciphertext attacks, IND-CCA1,
also for homomorphic encryption:

Definition 5 (IND-CCA1). For a PPT adversary A, we define the advantage function in
the sense of indistinguishability under chosen message attacks (IND-CCA1) as

Advind-cca1A,HPKE(κ) =

∣∣∣∣Pr
[
Expind-cca1A,HPKE(κ) = 1

]
− 1

2

∣∣∣∣,
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where the corresponding experiment is depicted in Experiment 2. If for all PPT adver-
saries A there is a is a negligible function ε(·) such that

Advind-cpaA,HPKE(κ) ≤ ε(κ),

then HPKE is IND-CCA1 secure.

Expind-cca1A,HPKE(κ):

(sk, pk)← KGen(1κ)

b←R {0, 1}
(m0,m1, st)← ADec(sk,·))(pk)

c∗ ← Enc(pk,mb)

b∗ ← A(c∗, st)

return 1, if b∗ = b

return 0

Experiment 2: IND-CCA1 security experiment for (homomorphic) public-key
encryption.

We, however, want to note, that homomorphic encryption schemes can not achieve the
stronger variant of indistinguishability under chosen ciphertext attack where the adversary
can also query the decryption oracle after obtaining the challenge ciphertext.

Additionally, we want the scheme to provide circuit privacy, i.e want to ensure that
fresh encryptions and evaluations are identically distributed. More precisely:

Definition 6 (Circuit Privacy). HPKE provides circuit privacy if the distributions of the
sets

{Enc(pk, f(m1, . . . ,mn)) |m1, . . . ,mn ∈M}

and ¶
Eval
Ä
f, (Enc(pk,mi))i∈[n]

ä
|m1, . . . ,mn ∈M

©
for all f ∈ F and all pk are indistinguishable.

This notion ensures that ciphertexts do not reveal that they where homomorphically
evaluated. In other words, ciphertexts output by the Eval algorithm look exactly the same
as if the ciphertexts were directly encrypted with Enc. This notion is also paramount
to distinguish between trivial and useful homomorphic encryption schemes. In a trivial
homomorphic scheme, one could simply combine all ciphertexts and when decrypting, one
then could simply evaluate the function after decryption. However, with such a scheme,
we would loose the ability to guarantee any security notions with respect to the initially
encrypted values.

Below we discuss some examples of homomorphic encryption schemes. We start with
a short overview of linearly and multiplicatively homomorphic schemes. Such schemes
are well known for more than four decades. Indeed, textbook RSA encryption [RSA78]
enjoys multiplicatively homomorphic properties but does not provide IND-CPA security.
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In the 80s, Goldwasser and Micali proposed a comparatively inefficient, but IND-CPA-
secure and the first linearly homomorphic scheme [GM82]. One of the most notable
schemes in factoring setting is the scheme due to Paillier [Pai99]. Besides being linearly
homomorphic and IND-CPA-secure, the Paillier public-key encryption scheme also allows
the homomorphic multiplication with a plaintext message very efficiently.2

For encryption schemes in the discrete logarithm setting, the plain ElGamal public-key
encryption scheme [Gam84] enjoys multiplicatively homomorphic properties and is also
IND-CPA secure under the decisional Diffie-Hellman assumption. Note though, that in
this case, the message space consists of group elements, and thus might not be suitable
for some applications. A variant dubbed linear ElGamal [BBS04] provides a linearly
homomorphic scheme. The message space for this scheme is Z modulus the group order,
however, it needs to map to the group for encryption. On decryption, one obtains the
message encoded in the group and has to reverse the encoding. Thus decryption becomes
tricky unless the actually used message space is reduced to a polynomial size.

The concept of fully homomorphic encryption was known since the 70s, but only since
Gentry’s seminal PhD thesis [Gen09a] we know of such a scheme based on hard problems
over lattices.3 The basic idea is the following: first one constructs a somewhat homo-
morphic encryption scheme allowing one to perform a limited number of homomorphic
operations, i.e. many additions, but only a few multiplication. Then, one repeatedly
refreshes the ciphertexts to allow unlimited operations in a process called bootstrap-
ping. Also, approaches such as TFHE [CGG+18], which was presented only recently, or
FHWE [DM15] follow this general paradigm.

3.2 Applications of Homomorphic Encryption to Multi-Party
Computation

As discussed before, homomorphic encryption is applicable if – in the most basic setting
– the scenario only consists of one receiver of the results and the computation nodes are
distinct from the receiver. In other words, we can also assume that the computation
nodes and the receiver do not collude. For the models outlined in Section 2.3, this means
that homomorphic encryption can be used in the cases of outsourcing computation (Sec-
tion 2.3.2), machine learning (Section 2.3.4), and aggregation (Section 2.3.6), in principal.
In these special settings, homomorphic encryption provides an important alternative ap-
proach to implement a protocol for computation on shared data securely. We also want
to note, that such approaches can have advantages when bandwidth is limited as the
encrypted data only needs to be sent from the input data providers to the computation
nodes, and finally to the receiver. Additionally, if non-collusion between the receiving
party and the computation nodes can be ensured, the amount of computation nodes can
be reduced and the theoretical limits discussed in Section 2.2 can be avoided.

2Such functionality is always possible given a linearly homomorphic scheme with a double-and-add-
style algorithm. However, its efficiently scales with the size of the plaintext coefficient. Paillier encryption
allows one to perform this computation with one exponentiation mod N2 instead of logarithmically
many.

3See also [Gen09b] for a preliminary version and [Gen10] for a high-level overview.
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More generally, besides secret-sharing based and other approaches, homomorphic en-
cryption is also used to build MPC protocols. One notable example of a generic purpose
MPC library is SCALE-MAMBA4 which, among others, is based on BDOZ [BDO+11] and
SPDZ [DPS+12].

4 Conclusion

For the exploitation of the valuable resource “Big Data” in a sustainable way, it is in-
evitable that we develop technology that can handle the associated privacy and confiden-
tiality threats. Secure multiparty computation (Section 2) and homomorphic encryption
(Section 3) are the two concepts, which are widely regarded as the most promising to
deal with the above-mentioned concerns. It is crucial to notice that multiparty compu-
tation and homomorphic encryption must be seen less as competing than complementary
approaches. The theoretical results for both concepts developed so far guarantee us the
mere existence of privacy preserving protocols. The challenge now is given a specific
functionality to find a sufficiently fast protocol, so that it can be used in a real-world
application.

In order to successfully develop an efficient and secure protocol, it is of great impor-
tance to rigorously define the desired functionality. This not only includes the involved
parties respectively their input and output but also their role in the computational task.
Only when these parameters are fixed, it makes sense to work on the concrete protocol.

Concerning, the selection of a model defined in Section 2.3, both legal requirements
and the trust relationship between the parties must be considered. Once we have fixed
the security model, we can concentrate on the right choice of a basic model. It has to be
said that the enumeration of models in Section 2.3 is non-exhaustive. This means that we
may have to define a new model or combine two or more of them. However, the presented
models exemplify the possible relations between the parties that have been observed in
the literature and practice.

To sum it up, the following prerequisites need to be checked before investigating con-
crete protocols:

• Define the desired functionality including inputs and outputs. Check that the func-
tionality can be evaluated in the “ideal” world. That is, check whether – assuming
the desired input data is available – a trusted third party would be able to compute
the result of the function.

• Define the involved parties including which parties provide input, receive the re-
sults of the computation, and which parties actively contribute to the computation.
Check which of the basic models applies to the involved parties and their roles.

• Check whether all parties are able to communicate securely via end-to-end encrypted
channels.

4https://homes.esat.kuleuven.be/~nsmart/SCALE/

Page 20 of 26

https://homes.esat.kuleuven.be/~nsmart/SCALE/


D5.1

• Define how many parties might be compromised or would potentially be interested
in colluding to gain an advantage. Check whether security against malicious adver-
saries is required or if semi-honest security suffices.

After defining the required key components and checking the requirements as outlined
above, the investigation of concrete protocols can commence.
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