
Grant Agreement Number: 825225

Safe-DEED

www.safe-deed.eu

Protocols for Privacy-Preserving Data Analytics and
Secure Lead-Time Based Pricing v1/2

Deliverable number D5.4

Dissemination level Public

Delivery data due 29.05.2020

Status Final

Authors Lukas Helminger, Fabian Schmid

This project has received funding from the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 825225.

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

Changes Summary

Date Author Summary Version
08.05.2020 Lukas Helminger,

Fabian Schmid
First Draft (for internal re-
view)

0.1

15.05.2020 Alexandros Bam-
poulidis

Internal Review 0.2

18.05.2020 Evangelos Kotsifakos Internal Review 0.3
25.05.2020 Lukas Helminger,

Fabian Schmid
Final Version (incorporated
reviews)

1.0

Page 1 of 15

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

Executive Summary
This deliverable D5.4 - Protocols for privacy-preserving data analytics and secure lead-time
based pricing v1 - is the second software result of Safe-DEED’s WP5 in the form of a demon-
strator. It is an outcome of the task T5.2 - Specialized protocols. In addition, to the software
libraries, this deliverable comprises a document that describes suitable protocols for the use-
cases in Safe-DEED’s WP6 and WP7. To achieve the privacy requirements in both use-cases
latest cryptographic primitives are used - in particular - Private Set Intersection and Multi-Party
Computation. The provided demonstrator is a preliminary one, although it is already operative.
In the final version, the functionality, as well as the software documentation, will be extended.

Page 2 of 15

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

Table of Contents
1 Introduction 5

1.1 Related Documents . 5
1.2 Roadmap . 5

2 Privacy-Preserving Data Analytics 5
2.1 Motivation . 5

2.1.1 WP6 Task Description . 6
2.1.2 Use-Case . 6

2.2 Private Set Intersection (PSI) . 6
2.3 Demonstrator . 8

2.3.1 Design Choices . 8
2.3.2 Resources . 9

2.4 Performance . 9

3 Secure Lead-Time Based Pricing (SLTBP) 10
3.1 Motivation . 10

3.1.1 Use-Case . 10
3.2 Multi-Party Computation (MPC) . 11
3.3 FRESCO . 11

3.3.1 Project Structure . 11
3.3.2 The FRESCO core . 12
3.3.3 Protocol Suites . 12

3.4 Demonstrator . 12
3.4.1 Initialization . 12
3.4.2 The PriceFinder . 13
3.4.3 The Process Flow . 13
3.4.4 Secure Channel . 13

3.5 Running the Demonstrator . 14
3.5.1 Resources . 14

4 Conclusion 14

5 References 14

Page 3 of 15

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

List of Figures
Fig.1 PSI with ZIP Codes . 7
Fig.2 PSI Benchmarks . 9
Fig.3 MPC Protocol for SLTBP . 11

Abbreviations

AES Advanced Encryption Standard
ATP Available to Promise
CRM Customer Relationship Management
FRESCO Framework for Efficient and Secure Computation
GUI Graphical User Interface
MPC Multi-Party Computation
PET Privacy-Enhancing Technology
PSI Private Set Intersection
SLTBP Secure Lead-Time Based Pricing

Page 4 of 15

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

1 Introduction
The purpose of this deliverable is to report on the cryptographic protocols developed for privacy-
preserving data analytics and secure lead-time based pricing for use in WP6 and WP7. It pro-
vides a demonstrator consisting of two independent software libraries. This document accom-
panies the libraries with a description of their functionality and the context to Safe-DEED.

1.1 Related Documents
D5.4 is heavily based on the research done in WP5. More concretely, the insights obtained
by D5.1, D5.2, and D5.3 were crucial in the design of the protocols in D5.4. On the other
hand, D5.4 will serve as the basis for the security protocols used in the demonstrators of WP6
(D6.2) and WP7 (D7.4). Although not required in the agreement, there will be an additional
demonstrator for ”hands-on” experimentation. D5.4 also contributes to this demonstrator.

1.2 Roadmap
In Section 2, we first give a motivation for privacy-preserving data analytics in Safe-DEED.
After introducing the general idea behind private set intersection (PSI), we give a description
of this part of the demonstrator. In Section 3, we explain the use-case of WP7 and the resulting
demonstrator.

2 Privacy-Preserving Data Analytics
The main objective of this part of the demonstrator is to develop protocols for privacy-preserving
data analytics. In Section 2.1, we will look at the specific motivation for privacy-preserving
data analytics in Safe-DEED. In addition, we describe the process of finding the right privacy-
enhancing technology (PET) for the use-case in WP6. Thereafter, we give a high-level descrip-
tion of the chosen secure computation protocol (Section 2.2). After that, we are going into the
specification of the demonstrator and explain the design choices (Section 2.3). In the end, we
report in Section 2.4 the outcomes of the first performance experiment.

2.1 Motivation
We take a brief look at WP6 to better understand the context of the demonstrator. The objec-
tive of this work package is to demonstrate that industries can benefit from securely exchange
data between companies to perform big data analytics and correlations. We have to develop
secure methods that protect the privacy of individuals since companies need to share data that
might contain personal information or reveal a company’s activities or strategies. Note that
Safe-DEED deliverable D3.2 discusses ”Legal and Ethical Requirements for Personal Data Use
Case”.

Page 5 of 15

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

2.1.1 WP6 Task Description

• Joint data usage within corporate environments: Strict rules often hinder the free ex-
change of data between different departments (e.g., between marketing and strategy de-
partment). Currently, there is a lack of protocols for securely sharing and computing on
joint data. Solving this issue could lead to more efficient business decisions.

• Joint data usage between different enterprises in the same domain: A joint analysis of two
competitors could be beneficial to both (e.g., joint market analysis). Understandably, the
main obstacle here is trust. Also, there is a fear of data leakage in such a collaboration.
Therefore, there is a strong need for protocols that are trustworthy by design.

• Joint data usage between different enterprises in different domains: Even if a company
owns a large amount of data, these data are highly likely to be very specific. Additional
data can be enriched with external data to provide useful insights that will help to choose
the proper and most efficient business strategies. So protocols for computation on joint
databases with external entities are of great importance.

2.1.2 Use-Case

There was a fruitful exchange of ideas between WP5 and WP6 about concrete use-cases arising
from the three tasks described above. The outcome of these discussions was to focus on the
intersection of datasets from different parties. More concretely, there is a business interest for
two enterprises to find out geographic areas where they both have customers. For instance,
such an area can then be targeted by a joint marketing campaign. More generally, this new
knowledge can lead to better alignment of common business interests in these areas.

The privacy requirement here is that both enterprises only learn the areas where they both
have customers. In contrast, an enterprise should not learn any area where it has no customers,
but the other enterprise does. In other words, the input of the enterprises - in this computation
- should be kept private. The only information available two both enterprises should be the
output. Such functionality can be achieved by Multi-Party Computation (MPC).

In the Safe-DEED deliverable D5.1 we have introduced ”Requirements for secure compu-
tations on large datasets with multiple owners”. It discusses the principles and requirements of
MPC. Here, we will use a particular MPC protocol called Private Set Intersection (PSI) protocol
to accomplish the privacy guarantees outlined in the paragraph above.

2.2 Private Set Intersection (PSI)
PSI is an MPC-protocol that allows two parties to jointly compute the intersection of their
datasets. Thereby, neither party learns information from the protocol execution except for the
elements in the intersection. In the rest of this section, we explain the high-level idea of PSI
protocols. Please note that this description is simplified. State-of-the-art protocols use more
sophisticated techniques, mainly for performance reasons.

For this description of PSI, we take two enterprises that want to compute the intersection
of their CRM data. For simplicity, we assume that their datasets of customers consist of only
one column - the ZIP code of their customers. The objective of PSI in this scenario is to find

Page 6 of 15

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

the common ZIP codes of the enterprises. The computation can be split into five phases and is
depicted in Figure 1.

1. Two Databases

2. Encryption

3. Exchange

4. Double Encryption

5. Comparing

ZIP
507143
801032
562175

...

ZIP
801032
507128
562139

...

ZIP
a!x#94

4ZsL§k3
*dk3Fll

...
µ

ZIP
tiJ§k3
+4Iflld
d743L!

...
µ

encrypts with ¤ encrypts with ¤

ZIP
a!x#94

4ZsL§k3
*dk3Fll

...

ZIP
tiJ§k3
+4Iflld
d743L!

...

ZIP
67iOLX
U8!d&3
x#34As

...
µµ

ZIP
U8!d&3
Bt§c3

dX*d3V
...

µµ

encrypts with ¤ encrypts with ¤

ZIP
67iOLX
U8!d&3
x#34As

...
µµ

ZIP
U8!d&3
Bt§c3

dX*d3V
...

µµ

ZIP
67iOLX
U8!d&3
x#34As

...
µµ

ZIP
U8!d&3
Bt§c3

dX*d3V
...

µµ

Figure 1: PSI with ZIP Codes

Page 7 of 15

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

1. Two Datasets: Each enterprise has its own table of ZIP codes (corresponding to cus-
tomers)

2. Encryption: The actual computation starts when both enterprises encrypt their data. For
encryption, they use similar schemes as AES. Encryption with private keys ensures that
the dataset is not decipherable to anyone else. Note that the encryption scheme has to be
commutative, i.e., if one encrypts a message with two different keys it does not matter
which key is used first.

3. Exchange: In this next step, each enterprise sends its encrypted table of ZIP codes to the
other enterprise. This is not a privacy risk since the other enterprise is not in possession of
the private key. Therefore it can not decipher the table. Encryption schemes are designed
in such a way that a brute-force attack is computationally not feasible.

4. Double Encryption: Now, both enterprises encrypt the just received table with their
private key from phase 2. So each of the tables is encrypted twice. Since the encryption
scheme is commutative, the order of encryption does not matter. Therefore the tables are
comparable.

5. Comparison: After exchanging the double encrypted tables, both enterprises can com-
pare the entries. Each match indicates that they have a ZIP code in common. More
precisely, the index where this match occurs tells which ZIP code they have in common.
The common entries then get encrypted with the respective private key.

2.3 Demonstrator
This part of the demonstrator consists of a Java PSI library. For the core functionality, we rely
on a state-of-the-art PSI protocol [4]. The protocol is secure against a malicious client and a
semi-honest server. For encryption, the protocol uses symmetric encryption schemes specially
designed for MPC. This allows a significant better throughput as elaborated in Safe-DEED’s
deliverable D5.2 ”Low Complexity Primitives”. Note that the core of the PSI protocol is written
in C++ for performance reasons.

2.3.1 Design Choices

There have been two major objectives during the development of the PSI library. First, the
interface should be as simple as possible. We want that the integration of our PSI library does
not require any background in cryptography or privacy. Thereby, we hope to lower the barrier
for developing privacy-enhanced applications. Secondly, the library should run on Windows as
well as Linux. This, again, should increase the audience for our PSI library.

In this deliverable, we do not provide a graphical user interface (GUI). Our PSI library can
be run as a command-line program. In addition, the library will be integrated into a demonstra-
tor in WP6. This demonstrator will cover the business use-case described in Section 2.1. This
is further proof that the library is easy to integrate into applications.

Page 8 of 15

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

Figure 2: PSI Benchmarks

2.3.2 Resources

As already mentioned, this report gives the context of the demonstrator. The source code is
available at https://github.com/Safe-DEED/PSI. There you also find all the information
required for installation and additional documentation.

2.4 Performance
In order to evaluate the performance of our PSI protocol, we decided to compare it to a different
Java PSI implementation. We chose to compare our PSI protocol to the implementation found at
https://github.com/aicis/fresco/tree/master/demos/psi. This PSI implementation
uses the general-purpose MPC-framework FRESCO [1] as a building block. The outcomes of
this comparison are depicted in Figure 2.

The specifics of the experiment are the following: Both parties posses lists of the same
size (10,50,100,200,500,1000,5000), where the last two set sizes were only tested with our
implementation (due to performance reasons). The runtime is in seconds and was averaged over
10 executions. We ran our benchmarks on a Linux laptop (Intel R© CoreTM i5-6200U CPU @
2.30GHz × 4) with 12 GB RAM available.

If we look at Figure 2, we see that both protocols scale similarly. However, our implemen-
tation is about two magnitudes faster. We believe that this performance difference is two-fold.
First, the core of our protocol is written in C++. In addition, we do not rely on a general-purpose
MPC-framework but, instead, use optimizations designed for PSI.

Page 9 of 15

https://github.com/Safe-DEED/PSI
https://github.com/aicis/fresco/tree/master/demos/psi

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

3 Secure Lead-Time Based Pricing (SLTBP)
In Section 3.1, we explain the use-case from WP7. Before we are going into the technical
description of this part of the demonstrator (Section 3.4), we take a look at the underlying MPC
framework for our demonstrator in Section 3.3.

3.1 Motivation
We take a brief look at WP7 to understand the context of the demonstrator better. The goal of
this work package is to integrate MPC technology into an existing order management platform
where customers of a manufacturer can purchase unallocated Available To Promise (ATP) (stock
that has yet to be allocated/sold to a customer) from the manufacturer privately and securely.
Details on ATP and lead-time are discussed in Safe-DEED deliverable D7.1 ”Algorithm which
allows for extraction of the data”.

Most of the data used in WP7 is non-personal data. Nevertheless, it is of great importance to
keep the data secure and private from a business perspective. Note that Safe-DEED deliverable
D3.3 discusses ”Legal and Ethical Requirements for non-Personal Data Use Case”.

WP5 and WP7 agreed on extending the use-case described in the agreement. We aim at
a solution that allows multiple customers to purchase unallocated ATP from a manufacturer
simultaneously. Thereby, we use the full potential of MPC. In addition, we solve a further
issue. Small companies (e.g., start-ups) are often not allowed to purchase directly from the
manufacturer because they request too few stocks. By allowing customers to aggregate their
order, they are able to buy directly from the manufacturer. Usually, this has the effect of lower
prices and faster delivery - both crucial to a start-up.

3.1.1 Use-Case

The goal of this part of the demonstrator is to enable small companies to buy from a much
larger enterprise as depicted in Figure 3. With MPC, small companies would be able to keep
their requested amount secret from their competitors. Even the vendor will only discover the
required items and suggested prices when the protocol finishes with success.

In the first version, every customer submits their requested amount and suggests a price.
Then everyone participates to secretly compare the required amounts with the available stock
of the vendor. In parallel, all participants determine the average offered cost per unit and weigh
it to the minimum price of the vendor. If the offers meet the prerequisites of a deal, everyone
reveals their distinct amount and the total cost of the order to the vendor. The clients only learn
whether the transaction was possible or not, even if they try to attack the protocol.

As a technical foundation for our demonstrator, we use FRamework for Efficient and Secure
COmputation (FRESCO). This framework provides the necessary functionality to build new
MPC protocols such as ours. We did not only want to write our protocol but also provide a
starting point for future work. Providing a starting point seemed necessary to us, since setting
up security against malicious adversaries in FRESCO can be quite tedious.

Since FRESCO is available in the public maven repository, we also developed our extension
using maven1. The use of maven assures ease of integration. In the end we want to have

1https://maven.apache.org/

Page 10 of 15

https://maven.apache.org/

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

Vendor
 3 !

Customer A
 3 ! Order

Price: 0.42
Volume: 1000
Date: 25.01.2020

Order
Price: 0.38
Volume: 4000
Date: 25.01.2020

unallocated ATP
minPrice: 0.33
Volume: 10000
Date: 25.01.2020

Customer B
 3 !

Figure 3: MPC Protocol for SLTBP

everything assembled into a single jar with dependencies called the priceFinder. Parameters on
startup define whether the priceFinder acts as the host or the client.

3.2 Multi-Party Computation (MPC)
Multi-Party Computation (MPC) is a technique from cryptography. It enables multiple parties
to perform joint data analysis. Thereby, the input data of each party is not revealed - only
the result of the data analysis is shared among the involved parties. The goal of MPC is to
do data analytics with multiple data providers in a privacy-preserving way. For a more in-
depth explanation and several illustrative examples, we refer to Safe-DEED deliverable D5.1
”Requirements for secure computations on large datasets with multiple owners”.

3.3 FRESCO
FRESCO can be understood as our main computation engine. We need to setup all the param-
eters needed and also provide some initialization code to fully enable active security. Having
done this groundwork, this demonstrator can now also be used to kick-start other, actively se-
cure, MPC projects, since these steps are use-case independent and can be reused. We now give
a quick overview of the main components of FRESCO.

3.3.1 Project Structure

FRESCO is available as a maven project and as a docker image2. Including the framework as a
maven dependency, as in our case, only takes several lines of code. The framework is separated

2https://www.docker.com/

Page 11 of 15

https://www.docker.com/

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

into two main parts, the core project and the protocol suites, which are both separate maven
projects. This design allows for additional protocol suites to be developed.

3.3.2 The FRESCO core

FRESCO core provides the general functionality needed to run an MPC program. The main
entry point to the library is the SecureComputationEngine. This class is the main driver of
the computation. Here all the MPC protocols are stored and evaluated over the network. This
class heavily relies on the ResourcePool, which serves as a container for runtime variables and
objects. Specific protocol suites need to implement their version of the ResourcePool, so they
have all the state variables they need. Finally, there is the protocol suites interface, which has
to be implemented externally.

3.3.3 Protocol Suites

There are many known techniques to implement MPC. These techniques are generally known
as secure computation protocols. Since there are often a lot of these protocols required for a
specific strategy, FRESCO implements all sub-protocols which are related together in so-called
protocol suites. These protocol suites contain the code to enable the specific cryptographic
technique used to ensure secure multi-party computation.

3.4 Demonstrator
This demonstrator implements the use-case described above, using the both the FRESCO core
and SPDZ protocol suite [3, 2]. The project consists of two main entry points, which will, from
now on, be referred to as host and client (having no network implications). Both of these can
be executed by the main function in the priceFinder, depending on startup parameters. We will
elaborate on this design desicion later in this chapter.

3.4.1 Initialization

Upon start, the user can give some customizing input, determining some computation strategies
for the application. In the current state, the input necessary is given in the Makefile, and a
Command-Line Parser class takes care of it, inside of the demonstrator. The data structure
created by this Parser class can easily be generated from different sources, e.g., configuration
files from databases. Next to configuration, the input of the program also consists of a price, a
volume and a date for each client and the host.

• Price The price either indicates the amount of money a client is willing to pay per each
unit or, in the case of the host, it indicates the minimum amount of money expected per
unit.

• Volume The amount that is either requested or provided by a given date.

• Date in a later enhancement, several selling windows with different delivery date options
are possible. The date either indicates the date of order for the client or indicates the date
from which on the units are available.

Page 12 of 15

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

After creating the required data structure, the initialization begins. This initialization essentially
has two main parts. Firstly, the components necessary for the application (i.e., this specific
execution) need to be set. This is done by setting a date, price, volume, and also starting up
the network and sharing some information with the other participants. Secondly, there are some
things to be done to start the FRESCO. Generally, the framework can be started rather quickly -
all the needed code can also be found in their demo project. Still, these demos are all not actively
secure. They do not use the secure SPDZ protocol but instead they have an insecure method
of generating the multiplication triples. To fix this issue, we need to include the MASCOT [5]
preprocessing strategy, which requires some boilerplate code for its initialization. After having
initialized both the application as well as the framework, we can start our application by running
it in the SecureComputationEngine.

3.4.2 The PriceFinder

To have a cleaner interface for our demonstrator project, we wanted to be able to start the
project as a host or as a client. This led to the executable class of the price Finder. Following
up on discussions with our partner, we wanted to be able to quickly edit the logic of the price
agreement. In this class we define the price finding method and pass it to our framework. This
way, we aim to make this method easily accessible without having to dig into our framework
code.

3.4.3 The Process Flow

When running our application, we pass the instance to the SecureComputationEngine in the
runApplication function, alongside our previously instantiated protocol suite and ResourcePool
objects. Every class implementing the application interface, needs to have a buildComputation
function. This function is called by the framework and used to build the MPC protocol. Build-
ing the protocol is achieved by returning an arbitrary number of lambda functions, which will
be executed consecutively later on. In other words, in buildComputation, the code of our
application is submitted to the framework. This is done because the real computation has to be
done over the network, and the function calls to the framework have to be replaced by native
protocols.

The logic for this specific application can mostly be found in the ATPManager, it also con-
tains the ATPUnit subclass. A single ATPUnit contains all the info about one order. The stocks
provided by the host are also stored as single units per date. This abstraction allows for quick
sorting of secretly shared values and to simplify operations and storage.

3.4.4 Secure Channel

After implementing the WP7 specific use-case, we wanted to extract as much functionality as
possible into a framework. This framework can be used to prototype FRESCO projects quickly.
On the one hand, we already described that a lot of boilerplate code is necessary to enable the
security of SPDZ. On the other hand, we provide some network capabilities based on the Java
Cryptographic extension. It is, therefore, possible to have a TCP connection with the other
parties in the protocol. The Sender and Receiver classes can be handed to the internal structure,

Page 13 of 15

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

such that FRESCO only uses this authenticated and encrypted communication channel. As it
best fits our use-case, at the moment the certificates are distributed beforehand.

3.5 Running the Demonstrator
We tested our protocol using different settings. Therefore the project comes with several pre-
defined demonstrator setups. In all of these there is one party as the host and several parties as
clients started in parallel. All of these processes work in different sub directories on the same
machine. The Makefile, which provides these demonstration setups, also states the inputs for
all the clients. Only the host process reads its input from a json data file. In the end one can see
the output of the individual processes in the log file of their respective directory.

3.5.1 Resources

This part of the demonstrator is also open source. It is available at https://github.com/
Safe-DEED/SLTBP. There you find additional information required for installation and further
documentation.

4 Conclusion
In this deliverable, we have presented protocols for privacy-preserving data analytics and secure
lead-time based pricing. Besides the implementations of the protocols, this demonstrator pro-
vides descriptions, illustrations, and context with regard to Safe-DEED. Despite being an initial
version, all protocols are already operative and have been tested on Linux as well as Windows.
The first benchmarks leave us confident that the developed technology is suitable for large data
sets. On the one hand, we will continue our research for scalable privacy-preserving protocols.
On the other, we aim at broadening the suite of protocols in the final version of the demonstra-
tor. We will also intensify our collaboration with the use-case partners to guarantee a smooth
integration of our components.

5 References

[1] Alexandra Institute. FRESCO - a FRamework for Efficient Secure COmputation, 2019.

[2] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ
limits. In ESORICS, volume 8134 of LNCS, pages 1–18. Springer, 2013.

[3] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In CRYPTO, volume 7417 of LNCS, pages 643–
662. Springer, 2012.

[4] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Christian
Weinert. Mobile private contact discovery at scale. In USENIX Security Symposium, pages
1447–1464. USENIX Association, 2019.

Page 14 of 15

https://github.com/Safe-DEED/SLTBP
https://github.com/Safe-DEED/SLTBP

D5.4 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-Time Based Pricing v1/2

[5] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster malicious arithmetic
secure computation with oblivious transfer. In ACM Conference on Computer and Commu-
nications Security, pages 830–842. ACM, 2016.

Page 15 of 15

	Introduction
	Related Documents
	Roadmap

	Privacy-Preserving Data Analytics
	Motivation
	WP6 Task Description
	Use-Case

	Private Set Intersection (PSI)
	Demonstrator
	Design Choices
	Resources

	Performance

	Secure Lead-Time Based Pricing (SLTBP)
	Motivation
	Use-Case

	Multi-Party Computation (MPC)
	FRESCO
	Project Structure
	The FRESCO core
	Protocol Suites

	Demonstrator
	Initialization
	The PriceFinder
	The Process Flow
	Secure Channel

	Running the Demonstrator
	Resources

	Conclusion
	References

