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D5.8 - PSI/MPC and multi-user data aggregation protocols v2/2

Executive Summary
This deliverable D5.8 - PSI/MPC and multi-user data aggregation protocols v2 - is an update of
D5.3. It is together with D5.7, the final outcome of task T5.1. This task was concerned with
developing and improving this work package’s core technologies with respect to both practical
and theoretical aspects.

The research efforts conducted within the scope of this deliverable lead to two scientific
papers. Both are currently in the peer-review process of major conferences in the area of cryp-
tography and privacy. There is the possibility of a third scientific paper depending on future
implementation success.

In the future, the plan is to integrate the majority of the developed protocols to the use-
cases in Safe-DEED’s work packages. In particular, the so-called Private Selective Aggregation
protocol will be applied in WP4’s Data Valuation Component. In addition, the novel Private Set
Intersection protocol will enhance the security in the WP6 demonstrator and thereby reduce the
necessary trust assumption.
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1 Introduction
The purpose of this deliverable is to report the progress regarding Private Set Intersection (PSI),
Multi-Party Computation (MPC), and secure data aggregation protocols. This document is the
second version of this report. It provides two new protocols and an update to a previous proto-
col. Two of the protocols are currently under peer-review in major cryptography, respectively,
privacy conferences. The papers’ abstracts can be found in Appendix A.

1.1 Related Documents
D5.8 is a research-focused deliverable and an updated version of D5.3. A general introduction
to the field of secure computing can be found in D5.1. Implementations to the protocols below -
if already existing - are part of D5.9. This document will contribute to the scientific foundation
for the demonstrator D5.11. In particular, the plan is to deploy at least two of the protocols in
WP4, respectively, WP6.

1.2 Road-map
In Section 2, we describe our idea of how to improve the security of high-performance PSI
protocols without much performance overhead. We continue - in Section 3 - by introducing a
novel privacy-preserving protocol dubbed Private Selective Aggregation. In Section 4, we give
an update to Multi-Party Computation Accumulators, which we introduced in D5.3. We defier
to Appendix B for the technical details of the private set intersection protocol.

2 Private Set Intersection with Public Verifiable Covert Se-
curity

In this section, we describe an idea of how we could improve the security guarantees of PSI
protocols without significant performance overhead. The main idea is to apply the work of
Hong et al. [7] to the PSI setting.

2.1 Current Security Performance Trade-Off
Handling security performance trade-off is crucial when cryptographic protocols move from the
academic into the real-world. So far, PSI does not offer a satisfactory trade-off because there
are only two options.

First, we have the so-called semi-honest variant. In this model, the performance of PSI pro-
tocols is practical. However, this model assumes a certain amount of mutual trust between the
two parties. More concretely, security holds only provided that both parties stick to the proto-
col. Once a party deviates from the protocol, there are no security guarantees left. Besides, an
honest party can not detect a cheating party. In many use-case scenarios, this security guarantee
is insufficient.

For those use-cases, one would choose PSI protocols that are malicious secure. They provide
security even if a party deviates from the protocol. Until this year, it was common to experience
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a ten-fold increase of runtime compared to semi-honest protocols leaving them impractical.
Pinkas et al. [10] presented a protocol that reduces the communicational overhead to roughly
25% and a two-fold increase in runtime. They achieved this by introducing a new data structure.

2.2 New Approach
In contrast, we propose to close the performance gap between semi-honest security and ma-
licious security by public verifiable covert security (PVC) [7]. PVC is a security model for
general secure two-party computation that strikes a compromise between semi-honest and ma-
licious security. Informally speaking, PVC ensures that a cheating party gets detected with a
certain probability, e.g., one half. Moreover, the honest party receives a certificate that undis-
putedly shows the malicious behavior of the cheating party. Hence, it can hold the cheating
party accountable.

This public verifiability has immense implications for real-world applications. For instance,
a cheating company would have to worry about its reputation as well as legal consequences.
Considering this, PVC offers close to malicious security in the realm of real-world security.

However, the performance of two-party PVC protocols is very close to semi-honest pro-
tocols. In particular, the overhead in communication is insignificant for multiplying integers.
Also, the runtime increases by less than 5%. Even for more complex computations, the perfor-
mance stays relatively close to the semi-honest case. Since PSI is a special two-party protocol,
we believe that similar results can be achieved for PSI protocols. To the best of our knowledge,
there exists no implementation of PVC security for PSI.

If the PVC’s favorable performance evaluations actually hold the PSI case, it would be the
best choice for many real-world applications. Our proposed solution uses only ”off-the-shelf”
cryptographic primitives compared to the leading malicious secure PSI protocol. This is not a
negligible advantage for real-world protocols. Besides, an improvement of the underlying ”off-
the-shelf” cryptographic primitives directly translates to an improvement of the PSI protocol.

2.3 Definition PVC
Before formally defining the notion of PVC for PSI protocols, we give an intuitive description.
PVC consists of two parts that work nicely together. First, a PSI protocol that has PVC must
have covert security, i.e., a malicious party gets detected with probability (usually denoted by
the Greek letter ε). Further, covert security is extended by PVC in the following way. Whenever
the malicious party gets detected, the honest party receives a notification of the misbehavior.
Moreover, the notification includes a certificate that can be publicly verified by anyone leaving
no doubt about the malicious party’s misbehavior.

We formalize covert security for PSI protocols via an ideal functionality - as common prac-
tice for MPC-protocols - depicted in Figure 1. More precisely, we are speaking about covert
security with deterrence ε ∈ [0,1], where ε represents the probability that the malicious party
gets caught cheating. Public verifiable covert security with deterrence ε extends the above no-
tion. More concretely, PVC is augmented by two algorithms, Blame and Judge. The Blame
algorithm is run whenever the honest party detects a malicious behavior. This algorithm takes
as input the honest party protocol execution’s view and outputs a certificate. The Judge algo-
rithm takes as input a certificate generated from the Blame algorithm and outputs 1 with over-
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whelming probability provided that there was a malicious behavior in the protocol’s execution.
In contrast, if there was no malicious behavior, the Judge should output 0 with overwhelming
probability. This ensures that an honest party can not be falsely accused (defamation freeness).

FPS I

S sends a set X or cheat, and C sends a set Y .

1. If S sends a set X then compute and output X∩Y .

2. If S sends cheat then:

• Send cheated to both parties, with probability ε.

• Send (undetected,Y) to S . Then wait to receive set Z from S , output Z.

Figure 1: Ideal functionality FPS I for covert security with deterrence ε for PSI.

2.4 Protocol
Pascal Steiner’s master thesis’s goal is to design and implement the first PSI protocol with PVC.
In other words, he tries to realize the ideal functionality of FPS I with public verifiability. The
idea is to combine the works of Hong et al. [7] and the PSI protocol of Kales et al. [8]. This
particular PSI protocol was used because it is currently integrated in WP6’s demonstrator. The
actual description of the protocol is complex and needs an advanced understanding of several
cryptographic primitives. Therefore, we refer the interested reader to Appendix B. Note that the
necessary preliminaries will be published and discussed in Pascal Steiner’s master thesis.

3 Private Selective Aggregation
In this section, we describe a protocol that we dubbed Private Selective Aggregation (PSA).
The goal was to develop a secure aggregation protocol that is suitable for enterprise-scale and
government-scale data sets. The general protocol and the Covid-19 Heat-map use-case were
introduced in the research paper [2]. The following is a high-level description of the paper for
details, please see the full paper.

Our two-party protocol enables a client to retrieve aggregated information about a server’s
database privately. In addition, the client has the opportunity to choose which database entries
should be in the aggregation.

3.1 Threat Model
The threat model of this protocol is two-fold. On the one hand, the server should neither learn
which entries will be aggregated nor the aggregated value itself. Translated to our example Fig-
ure 2: Netflix should not learn that Paul wants to know how long Amy and Jack are streaming.
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On the other hand, the client should not learn individual database entries - Paul should not know
that Amy streams 2.0 hours or that Jack streams 2.5 hours.

Paul

Paul’s friends
Amy
Jack

Netflix

Amy 2.0h
Betty 3.2h

Charles 0.2h
Jack 2.5h
Rosa 1.1h

Amy, Jack

4.5h

Figure 2: Naive protocol.
Paul wants to know how long combined his friends Amy and Jack are streaming from Netflix.

3.2 Protocol
To achieve the privacy goals outlined above, we use various state-of-the-art privacy-preserving
primitives. In particular, we apply homomorphic encryption, zero-knowledge proof techniques,
and differential privacy. Homomorphic encryption (HE) protects the client’s request from the
server. Due to the nature of homomorphic encryption, the server can perform the data aggre-
gation without decrypting the client’s request. To prevent the client from learning individual
database entries, we ensure that the client’s request has a specific minimum size by applying
so-called zero-knowledge proof techniques. The server can also add noise - in the sense of
differential privacy - to the aggregated value before sending it back to the client. This becomes
necessary if the aggregated value would still be a privacy issue. Informally, our protocol is
secure as long as the underlying homomorphic encryption scheme is secure.

More formally, we defined our protocol as an ideal functionality, which is a common prac-
tice for secure computation protocols. We showed input privacy in the presence of a maliciously
controlled mobile operator provided that the homomorphic encryption scheme is semantically
secure.

We implemented the protocol for the two use-cases below. The implementations are open
source 1. For a description of the implementations, see Safe-DEED deliverable D5.9 - ”Imple-
mentation of cryptographic building blocks and specialized protocols v2/3”.

1https://github.com/IAIK/CoronaHeatMap
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3.3 Use-Case Privacy-Preserving Questionnaire
One component of Safe-DEED is concerned with data valuation (for details, see Safe-DEED
deliverables D4.1 and D4.2). The purpose of the Data Valuation Component (DVC) is to provide
companies with a tool for estimating their data’s value. Roughly speaking, this assessment is
split into two sub-components:

• Qualitative Information Extracting and Data Scoring Sub-Component (QDSC)

• Automatic Data Analysis and Scoring Sub-Component

In this report, we show how to perform the QDSC in a privacy-preserving way.

3.3.1 Qualitative Information Extracting and Data Scoring Sub-Component (QDSC)

This stage of the data valuation process requires users to provide information about their data
set. The users are asked to perform a questionnaire that comes in three parts.

• Business Intelligence: Data acquisition cost and business impact.

• Domain-Specific: Generation of data.

• Data Science: Technical details.

If the DVC is offered as a Software as a Service (SaaS), then the questionnaire could be seen as
a liability by the users. Namely, not every company will be comfortable to share the answers to
the following questions with Eurecat.

• Is the data already producing money?

• Is the data usage shared with partners?

• Is the data used to establish a new business/R&D direction?

• Does processing involve significant costs?

Therefore, it is important to assure the companies of the confidentiality of their data even against
the malicious behavior of Eurecat.

3.3.2 Privacy-Preserving QDSC

A customized version of our protocol enables users to perform the QDSC in a privacy-preserving
way. More concretely, the answers to the questionnaire get homomorphically encrypted before
sending them to Eurecat. Due to the nature of homomorphic encryption, Eurecat can perform
the valuation without decrypting the user’s answers. (The user is the only one who has the
decryption key.) After the valuation, Eurecat ends up with the encrypted score for the user’s
answers. Eurecat sends the score back to the user, which can then decrypt the result and thereby
receive its score.
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User

Answers
yes
no
...

Eurecat

# Question Points
1 1.0
2 1.5
3 0.5
...

...

Answers
yes
no
...

µ

¤

Answers
yes
no
...

µ

Homomorphic Computation

µ Data Valuation

Score µ

89/100 ¤

Figure 3: Privacy-Preserving QDSC
The user encrypts his answers to the questionnaire before sending them. Eurecat posses an evaluation
table that assigns each answer to a particular value. This table gets matched with the answer by homo-
morphic means, i.e., Eurecat does not learn the user’s answers. Eurecat then sends the encrypted score
back to the user, decrypting it with the private key (red).

3.4 Use-Case Covid-19 Heat Map

3.4.1 Connecting Mobility to Infectious Diseases

Human mobility is undisputedly one of the critical factors in infectious disease dynamics. On
the one side, increased human mobility may account for more contacts between receptive and
infected individuals. On the other side, human travel may introduce pathogens into new ge-
ographical regions. Both cases can be responsible for an increased prevalence and even an
outbreak of the infectious disease [12]. In particular, human travel history has been shown to
play a critical role in the propagation of infectious diseases, like influenza [3] or measles [5].
Therefore understanding the spatiotemporal dynamics of an epidemic is closely tied to under-
standing the movement patterns of infected individuals.

Until a few years ago, researchers had to rely on static data – relative distance and population
distribution – to model human mobility, which was then combined with a transmission model
of a particular disease resulting in an epidemiological model. This model was then used to
improve the understanding of the geographical spread of epidemics. Mobile phones and their
location data have the unique potential to improve these epidemiological models further. Indeed,
recent works [13, 14] have consistently been showing that substituting the static mobility data
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with mobile phone data leads to significantly more accurate models. Integrating such up-to-
date mobility patterns allowed them to identify hotspots with a higher risk of contamination,
enabling policymakers to apply focused measures.

While prior studies have exclusively relied on a mobile operator’s subscribers’ aggregated
data, it may be preferable to contemplate aggregated mobility data of infected individuals only.
Indeed, a cholera study [4] observed that although their model has high accuracy, it performs
less well when the cumulative incidence is low. They speculated that demographic stochastic-
ity could be one reason for the bad performance of their model. In other words, the infected
individuals’ mobility pattern may not be precisely reflected by the population’s mobility if the
prevalence is low. In order to mitigate this problem, we propose the usage of infected individ-
uals’ mobile phone data, which should lead to an improvement in the predictive capabilities of
epidemiological models, especially in highly dynamic situations.

Clearly, naively linking mobile phone data with infected individuals would massively in-
trude on privacy. Namely, either the mobile network operator would have to know which
subscribers are infected, or the epidemiological researchers would have to get access to non-
anonymized data records. As a result, previous studies considered the availability of travel
history information from patients as not possible and attempted to control possible biases in the
results manually [11].

3.4.2 Connecting Mobility to Infectious Diseases via Applied Cryptography

Our protocol can be applied to report the aggregated mobile phone location data of infected in-
dividuals while still maintaining compliance with privacy expectations. We use various state-of-
the-art privacy-preserving cryptographic primitives to design a two-party protocol that achieves
the following: The epidemiological researchers (or a health authority) input patients’ identifiers,
whereas the mobile operator inputs call data records (CDRs) of its subscribers. The protocol
outputs the patients’ aggregated location data from the CDRs to the researchers. Informally,
neither do the researchers access individuals’ CDRs nor do the mobile operator learn which
subscribers were involved in the computation, and therefore, who is infected.

For an interested audience with little security and cryptography background, we created a
webpage2 that describes our approach and basically has the following message: Even in times
of crisis where it is tempting to (temporarily) lower data protection standards for purposes of big
data analytics, there are technical methods to keep data protection standards high. Moreover,
those technical methods are practical and available.

2https://covid-heatmap.iaik.tugraz.at
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Researchers

0043 664 1234567
0043 664 7654321

...

Mobile Operator

0043 664 7654321 location data
0043 664 3454359 location data

...
...

0043 664 1234567
0043 664 7654321

...

µ

¤

0043 664 1234567
0043 664 7654321

.

.

.

µ

Homomorphic Computation
µ Validate Request

Data Aggregation
Differential Privacy

Éµ

Éµ

É
¤

3.5 Scalability
Despite using homomorphic encryption - which usually has a very high computational over-
head - the protocol is practical for real-world parameters. More concretely, the protocol scales
linearly in the dimension of the database of the server, depicted Figure 4.

Benchmarks for the Covid-19 Heat-map use-case were able to show that privacy-preserving
health data analytics is possible even on a national scale. We tested our protocol for parameters
suitable for Austria (20000 cell towers and 8 million mobile network operator subscribers), i.e.,
we have a database of dimension 223×215) on the server-side.

We ran several tests with different security levels. For the most popular security level (80-
bit) in the HE setting, the protocol takes between half an hour and four hours depending on the
statistical security parameter. The data transfer includes a one-round trip with less than 1GiB.
For details, we have included the tables 1 and 2 from the paper.
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Figure 4: Linear dependency of the runtime of the overal matrix multiplication to the
number of MatMul evaluations. BFV parameters are: log2(p) = 33, log2(q) = 218, n = 8192,
κ = 128.

Table 1: Runtime for the Data Aggregation Phase for different parameters using 88
threads. The column Masking indicates whether this parameter set is only able to evalu-
ate the matrix multiplication (7), or gives the statistical privacy ν (in bits) provided by the
masking value.

BFV Matrix #MatMul Masking Runtime
Nr. log2(p) log2(q) n κ N k total / per thread ν min

1 33 218 8192 128 223 215 8192/96 31 59.36
2 60 218 8192 128 223 215 8192/96 7 89.87
3 60 438 16384 128 223 215 2048/24 58 267.19

4 33 162 4096 80 223 215 32768/384 7 33.55
5 33 329 8192 80 223 215 8192/96 31 89.32
6 60 329 8192 80 223 215 8192/96 58 140.82

Table 2: Data transmission in MiB for the different parameters in Table 1. Values include
keys for evaluating the masking value when applicable.

Client Server Total
Nr. ct gk rk Total ct

1 256.2 87.6 1.3 345.1 1.0 346.1
2 256.2 81.4 - 337.6 2.0 339.6
3 512.1 639.2 9.0 1160.3 2.0 1162.3

4 128.3 6.2 - 134.5 1.0 135.5
5 384.2 183.9 2.6 570.7 1.0 571.7
6 384.2 183.9 2.6 570.7 2.0 572.7
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4 Multi-Party Computation Accumulators: Update
In this section, we are reporting an update regarding the researcher of Multi-Party Computa-
tion Accumulators (MPC-accumulators). MPC-accumulators were co-developed by researchers
from Safe-DEED, see Safe-DEED deliverable D5.3 and D5.5 for the initial work. Since then,
there have been substantial changes, including the new title: ”Multi-Party Revocation in Sovrin:
Performance through Distributed Trust” [6].

Firstly, we considerably improved the performance of MPC-accumulators. Not only were
we able to reduce the online phase by a magnitude of two, but we could also reduce the of-
fline runtime by a factor of approximately five. These values hold for parameters expected in
real-world applications. As a representative example, 1 shows the evaluation algorithm’s per-
formance for malicious security in the Wide Area Network (WAN) setting. The full benchmarks
can be found in the paper.

Secondly, our MPC-accumulators can apply to a wider range of trust settings. So far,
MPC-accumulators worked only as long as all parties cooperated. In contrast, now MPC-
accumulators work in a so-called threshold environment. The MPC-accumulator’s operator
can define that it should work as long as a certain number of parties cooperate. This greatly
enhances the flexibility of our scheme.

Besides these technical upgrades, we describe a new use-case in the paper. MPC-accumulators
have great potential for revocation in distributed credential systems such as Sovrin3. Currently,
this requires a trusted credential issuer, which is a single point of failure. Applying MPC-
accumulators in this scenario results in a reduction of the trust assumption into the Sovrin foun-
dation.

5 Conclusion
In this deliverable, we achieved three different objectives. At first, we outlined how to get a
better security performance trade-off for PSI protocols. The idea is to take the fastest protocol
and enhance real-world security by talking business incentives into consideration. We will work
further on an actual implementation of this protocol. Secondly, we developed a novel protocol
for private, selective data aggregation, which is highly scalable. The scalability was achieved
by combing the strengths of several privacy-enhancing technologies. Also, this protocol is
immensely versatile, as highlighted by completely different use-cases. At last, we showed a
significant performance improvement for MPC-accumulators.

3https://sovrin.org/
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Figure 5: Runtime MPC-Accumulator Eval Algorithm
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Privately Connecting Mobility to Infectious
Diseases via Applied Cryptography
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Abstract. Human mobility is undisputedly one of the critical factors
in infectious disease dynamics. Until a few years ago, researchers had
to rely on static data to model human mobility, which was then com-
bined with a transmission model of a particular disease resulting in
an epidemiological model. Recent works have consistently been show-
ing that substituting the static mobility data with mobile phone data
leads to significantly more accurate models. While prior studies have
exclusively relied on a mobile operator’s subscribers’ aggregated data,
it may be preferable to contemplate aggregated mobility data of in-
fected individuals only. Clearly, naively linking mobile phone data with
infected individuals would massively intrude privacy. This research aims
to develop a solution that reports the aggregated mobile phone location
data of infected individuals while still maintaining compliance with pri-
vacy expectations. To achieve privacy, we use homomorphic encryption,
zero-knowledge proof techniques, and differential privacy. Our protocol’s
open-source implementation can process eight million subscribers in one
and a half hours. Additionally, we provide a legal analysis of our solution
with regards to the General Data Protection Regulation.

Keywords: FHE, privacy, Covid-19, mobile data, GDPR

1 Introduction

1.1 Human Mobility and Infectious Diseases

Human mobility is undisputedly one of the critical factors in infectious disease
dynamics. On the one side, increased human mobility may account for more
contacts between receptive and infected individuals. On the other side, human
travel may introduce pathogens into new geographical regions. Both cases can
be responsible for an increased prevalence and even an outbreak of the infectious
disease [55]. In particular, human travel history has been shown to play a critical
role in the propagation of infectious diseases, like influenza [24] or measles [31].
Therefore understanding the spatiotemporal dynamics of an epidemic is closely
tied to understanding movement patterns of infected individuals.
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Abstract. Accumulators provide compact representations of large sets
and enjoy compact membership witnesses. Besides constant-size wit-
nesses, public-key accumulators provide efficient updates of both the
accumulator itself and the witness; however, they come with two draw-
backs: they require a trusted setup and – without knowledge of the secret
trapdoors – their performance is not practical for real-world applications
with large sets. Recent improvements in the area of secure multi-party
computation allow us to replace the trusted setup with a distributed
generation of the public parameters.

In this paper, we introduce multi-party public-key accumulators dubbed
dynamic linear secret-shared accumulators. We present versions of dy-
namic public-key accumulators in bilinear groups giving access to more
efficient witness generation and update algorithms that utilize the shares
of the secret trapdoors sampled by the parties generating the public pa-
rameters.Specifically, for the t-SDH-based accumulators, we provide a
maliciously-secure variant sped up by a secure multi-party computation
(MPC) protocol (IMACC’19) built on top of SPDZ. For this scheme, a
performant proof-of-concept implementation is provided, which substan-
tiates the practicability of public-key accumulators in this setting. With
our implementation in two MPC frameworks, MP-SPDZ and FRESCO,
we obtain more efficient accumulators for both medium-sized (210) and
large (214 and above) accumulated sets.

Finally, we explore applications of dynamic linear secret-shared accumu-
lators to revocations schemes of group signatures and credentials system.
In particular, we consider it as part of Sovrin’s system for anonymous
credentials where credentials are issued by the a foundation of trusted
nodes. Hence, our accumulators naturally fit this setting.

Keywords: multiparty computation, dynamic accumulators, distributed
trust
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B PSI with PVC Protocol

B.1 Covert Security With Public Verifiability
As already discussed in 2, there is another security model regarding multi party computation
besides semi-honest and malicious security. Covert security aims to be only slightly slower
than semi-honest security while also providing a practical level of security. The security
guarantee is that a dishonest party is caught cheating by the other party with probability 1− ε,
but is able to cheat successfully with a tweakable probability ε.
Though, the guarantee provided by covert security on its own is not enough since the cheating
party can simply deny the claims of the honest participant. Hence, an honest party cannot
convince anybody else that someone cheated, and reputation is only damaged towards the
involved honest party. For this purpose, one needs publicly verifiable covert (PVC) security, as
it was first introduced in [1]. PVC security enables the honest party to generate a certificate,
which proves that a dishonest party has cheated. Due to this mechanism, the reputation of
cheating parties is now damaged publicly and may have negative financial or legal
consequences, which is a reasonable incentive not to try to cheat.
The PVC security protocols follow the cut-and-choose paradigm. In such a protocol, one first
defines a deterrence factor λ, which indicates the probability of catching a cheating party. The
garbler, called PA in the context of this description, picks λ different seeds as well as
corresponding witnesses, while the evaluator, denoted as PB, picks a random evaluation index
̂ ∈ (1, . . . ,λ). Then signed oblivious transfer is run on the seeds generated before. Signed OT is
a process where a party obliviously learns one out of two inputs plus a signature on the learned
value.
The input of the evaluator for the oblivious transfer is always 0 except for ̂th instance of the
OT, where the input is 1 instead. After having executed the signed OT, PB knows all seeds
except seed ̂. For the evaluation instance, PB learns the witness witness ̂ corresponding to
seed ̂ instead. Next, PA generates λ garbled circuits, using seed j as randomness in the jth
instance.
Furthermore, commitments to the generated garbled circuits are made, signed, and finally sent
to the evaluator. In order to let the party, PB learn the wire labels for its input, signed OT is
performed once again. For every check instance, that is for every index j , ̂, the commitments
are checked with the help of each seed seed j. If one circuit commitment is invalid, a certificate
is issued that consists of the inconsistent values as well as the signatures on them. If every
commitment is correct, party PB reveals its chosen evaluation index ̂ to PA. PA sends the ̂th
garbled circuit to PB, along with PA’s own input wire labels, allowing PB to finally evaluate
the garbled circuit.
The only way a dishonest party PA is able to cheat successfully is to correctly guess which one
of the λ instances is the ̂th instance, the evaluation instance. With a total of λ instances, this
means PA is caught with a probability of 1− 1

λ . Unfortunately, the described form of a PVC
secure protocol has a few major problems. First off, signed oblivious transfers are
computationally expensive and also complex to implement. Secondly, the certificates can
become quite large since they depend on the size of the circuit.
Additionally, it is possible for the garbler to conduct selective-failure attacks. The vulnerability
occurs when PA sends a single incorrect wire label for the input of PB for the ̂th garbled
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circuit. For instance, if PA corrupts an input wire label for the one-value and PB aborts, then
PA learns that the value on that input wire was indeed one. Technically there is a solution to
prevent these selective-failure attacks, namely a technique called XOR-tree (see [9]), but this
method is not very practical since it needs additional signed oblivious transfers.

B.1.1 PVC Secure Protocol Improvements

The work of [7] manages to efficiently solve the problems described in the previous section.
The basic structure is similar, though. The two parties are once again the garbler PA (the
server) with input x ∈ {0,1}n1 and key-pair (pk, sk) for a signature scheme, and the evaluator PB
(the client) with input y ∈ {0,1}n2 . It is assumed that PB has gained knowledge of the public
key pk beforehand.
Again, λ instances of the garbled circuit are created. One instance, enumerated with the
uniformly chosen index ̂, constitutes the evaluation instance, which is the actual instance that
is evaluated in order to calculate the output. The other instances are called check instances and
are used to find out whether the participants of the protocol are honest or not.
The garbling scheme is defined by two algorithms. The garbling algorithm Gb takes the
security parameter 1κ and some circuit C with n = n1 + n2 input wires and n3 output wires as
input, and produces input wire labels pairs {Xi,0,Xi,1}

n
i=1, output wire label pairs {Zi,0,Zi,1}

n3
i=1

and the garbled circuit GC as the output. Eval is the algorithm for the evaluation and outputs
output wire labels {Zi}

n3
i=1 upon supplying the input, which is consisting of a garbled circuit GC

and the corresponding input wire labels {Xi,0,Xi,1}
n
i=1.

One very important change to the standard PVC secure protocol is that the seeds {seedA
j } j∈[λ],

which are generated by party PA, do not only derandomize the creation of the garbled circuits
GC j and the corresponding commitments c j on them, but the entire execution of the remaining
protocol. This includes the oblivious transfer, denoted as

∏
OT , employed in order to let the

client learn its input wire labels. Hence, signed OTs are no longer required in this step. As the
entire execution of the protocol is determined by the seeds {seedA

j } j∈[λ] the client receives from
the server in the initial OT, selective-failure attacks are also prevented.
Furthermore, PA must sign the transcript of each instance in the protocol. In case PA cheats,
PB is able to create a certificate using the seed of the inconsistent instance and the signed
transcript. The signed transcript σ j includes the circuit C, the instance index j, the seed
commitments h j of PB, the transcript trans j of the OT for the seeds, the transcript hashH of
the OT for the input wire labels, and the commitment on the whole circuit including the labels,
c j. A transcript hashH is defined asH = (H(m1),H(m2), ...), where H is a hash function with
output length 2κ and (m1,m2, ...) represent the messages that the two parties exchange
alternately during a conversation.
On the other hand, defamation freeness is achieved by PB, also committing to its randomness,
that is, its seeds {seedB

j } j∈[λ]. The commitments on the seeds h j = Com(seedB
j ) are included in

PA signatures σ j, which makes it impossible for PB to falsely claim that PA has cheated, since
PB derives all its randomness from those seeds. Deriving its randomness from a seed means
that the party is using a pseudo random function in CTR mode with said seed as key. Com
denotes a commitment scheme, the corresponding decommitment decom constitutes the
randomness used for the commitment.
The last major problem that remains is the signed oblivious transfers that are put to use when
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letting PB learn the seeds {seedA
j } j∈[λ] of PA for all but one garbled circuit instance. The need

for the signed OTs in this step disappears due to the commitments h j of PB to its seeds
{seedB

j } j∈[λ], because the seeds {seedA
j } j∈[λ] that PB learns can be reconstructed from the

transcripts trans j of the execution of the OT protocol
∏

OT plus the seeds {seedB
j } j∈[λ]. The

transcript trans j is also signed by the garbler, which enables anyone to verify the seeds used
by PA publicly. The certificate size is also constant by having PB generate all its randomness
solely from a short seed.
The protocol in full detail is depicted in Figure 6.
Our first proposal for a PSI protocol with PVC can be found in Figure 7.
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PA (Garbler) PB (Evaluator)
Input: x ∈ {0,1}n1 ,keys (pk, sk) Agree on circuit C, Input: y ∈ {0,1}n2 ,knows pk

security parameter κ,

deterrence factor λ
Choose κ-bit {seedB

j } j∈[λ]

{h j} j∈[λ] Set h j← Com(seedB
j ) ∀ j

Choose κ-bit {seedA
j ,witness j} j∈[λ] Choose uniform ̂ ∈ [λ]

Set b ̂ = 1 and b j = 0 for j , ̂

(seedA
j ,witness j)

trans j

∏
OT
∀ j

b j, seedB
j

{seedA
j } j, ̂,witness ̂, trans j

∀ j ∈ [λ] garble C using seedA
j

Obtain GC j,

input-wire labels of PA {A j,i,b}i∈[n1],b∈{0,1},

input-wire labels of PB {B j,i,b}i∈[n2],b∈{0,1},

and output-wire labels {Z j,i,b}i∈[n3],b∈{0,1}

{(B j,i,0,B j,i,1)}n2
i=1, seedA

j ,

H j

∏
OT
∀ j

y if ̂ = j,0n2 otherwise, seedB
j

{B ̂,i,y[i]}i∈[n2],H j

Compute hA
j,i,b← Com(A j,i,b) ∀ j, i,b

c j← Com(GC j, {hA
j,i,b}i∈[n1],b∈{0,1},

{Z j,i,b}i∈[n3],b∈{0,1}), where each pair (hA
j,i,0,h

A
j,i,1)

is randomly permuted. (Randomness from seedA
j )

∀ j ∈ [λ] : σ j← Signsk(C, j,h j, trans j,H j,c j) {c j} j∈[λ],σ j

Check if σ j is valid ∀ j,

abort with output ⊥ otherwise

∀ j , ̂ use seedA
j to compute Ĥ j, ĉ j

Check if (Ĥ j, ĉ j) = (H j,c j) ∀ j , ̂

If check fails output corrupted, send

cert = ( j, trans j,H j,c j,σ j, seedB
j ,decomB

j )

to PA, and halt

̂, {seedA
j } j, ̂,witness ̂

Check if {seedA
j } j, ̂,witness ̂ are correct,

otherwise abort

GC ̂, {A ̂,i,x[i]}i∈[n1]

{hA
̂,i,b}i∈[n1],b∈(0,1)

{Z ̂,i,b}i∈[n3],b∈(0,1)

decom ̂, {decomA
̂,i,x[i]}

Check if c ̂ =

Com(GC ̂, {hA
̂,i,b}, {Z ̂,i,b},decom ̂) and

Com(A ̂,i,x[i];decomA
̂,i,x[i]) ∈ {h

A
̂,i,b}b∈{0,1}∀i,

otherwise abort with output ⊥

Evaluate GC ̂ using {A ̂,i,x[i]}i∈[n1] and

{B ̂,i,y[i]}i∈[n2] to obtain {Zi}i∈[n3]

Then, ∀i ∈ [n3]: If Zi = Z ̂,i,0, set z[i] = 0

If Zi = Z ̂,i,1, set z[i] = 1,

else abort with output ⊥

Output z

Figure 6: PVC secure protocol as proposed by [7]
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Server PA (Garbler) Client PB (Evaluator)
Input: X = {x1, . . . ,xNs} of bit length α,keys (pk, sk) Input: Y = {y1, . . . ,yNc} knows pk

Agree on Circuit C, security parameter κ, deterrence factor λ Agree on Circuit C, security parameter κ, deterrence factor λ
Choose κ-bit {seedB

j } j∈[λ]

Set h j←Com(seedB
j ) ∀ j

{h j} j∈[λ]

Choose κ-bit {seedA
j ,witness j} j∈[λ] Choose uniform ̂ ∈ [λ],set v ̂ = 1 and v j = 0 for j , ̂

(seedA
j ,witness j)

trans j

∏
OT
∀ j

v j, seedB
j

{seedA
j } j, ̂,witness ̂, trans j

Generate random PRF key k of bit length αk and Free-XOR offset ∆ Base Phase S := {}

for j = 1 to λ: Agree on ε,v,b for j = 1 to λ:

for i = 1 to Npre
C : for i = 1 to Npre

C :

for a = 1 to α: for a = 1 to α:

∆

r j,i,a,0,r j,i,a,1 = r j,i,a,0⊕∆,H j

Run αNpre
C λ random C-OTs

via OT Extension

random c j,i,a

r j,i,a,c j,i,a ,H j

for j = 1 to λ:

for i = 1 to Npre
C :

(P̃RF j,i
k , l j,i,1,0, . . . , l j,i,α,0) = GC.Build(PRF,k,r j,i,1,0, . . . ,r j,i,α,0,∆,seedA

j )
Initialize Cuckoo filter CF with parameters Ns, ε,v,b Setup Phase
for i = 1 to NS :

CF.Insert(PRFk(xi)) CF

Online Phase

Compute h(K)
j,ak ,b
←Com(l(K)

j,ak ,b
) where j ∈ [λ],ak ∈ [αk],b ∈ {0,1}

c j←Com(GC j, {h
(K)
j,ak ,b
}, {l(O)

j,ao,b
}), where each pair (h(K)

j,ak ,0
,h(K)

j,ak ,1
)

is randomly permuted.

{c j} j∈[λ]

for j = 1 to λ: for j = 1 to λ:

for i = 1 to NC: for i = 1 to NC:

for a = 1 to α: for a = 1 to α:

b j,i,a = c j,i,a⊕y j,i,a

B j,i,a = rb j,i,a
j,i,a ⊕ l j,i,a,0 l ̂,i,a = rc ̂,i,a

̂,i,a ⊕B ̂,i,a

∀ j ∈ [λ] : σ j← S ignsk(C, j,h j, trans j,H j,c j, {b j,i,a,B j,i,a}i∈[NC],a∈[α])

σ j

Check if σ j is valid ∀ j, abort with output ⊥ otherwise

∀ j , ̂ use seedA
j to compute Ĥ j, ĉ j and check if

(Ĥ j, ĉ j) = (H j,c j)

If check fails for some j , ̂: output corrupted, send

cert = ( j, trans,H j,c j,σ j, {b j,i,a,B j,i,a}i∈[NC],a∈[α],

seedB
j ,decomB

j ) to PA, and halt

̂, {seedA
j } j, ̂,witness ̂

Check if {seedA
j } j, ̂,witness ̂ are all correct, otherwise abort

PRFk(yi) = GC.Eval(P̃RF j,i
k , l j,i,1,0, . . . , l j,i,α,0)

If CF.Contains(PRFk(yi)):

put yi into S

Output S
Update Phase

Insert / Delete NU items

U := {}

for i = 1 to NU :

compute tag ti and CF position pi for PRFk(ui)

Put (ti, pi) intoU

U,op ∈ {Insert,Delete} for i = 1 to NU :

Insert / Delete ti in CF at position pi or pi⊕H(ti)

Figure 7: PSI with PVC
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