
Grant Agreement Number: 825225

Safe-DEED

www.safe-deed.eu

Protocols for Privacy-Preserving Data Analytics and
Secure Lead-Time Based Pricing v2/2

Deliverable number D5.11

Dissemination level Public

Delivery data due 31.05.2021

Status Final

Authors Alexander Grass, Lukas Helminger, Fabian Schmid

This project has received funding from the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 825225.

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Changes Summary

Date Author Summary Version
07.05.2021 Alexander Grass,

Lukas Helminger,
Fabian Schmid

First Draft (for internal re-
view)

0.1

12.05.2020 Tobias Leander
Welling, Fabian
Gassner, Trung
Nguyen, Jan-Philipp
Erdmann

Internal Review 0.2

17.05.2020 Mihnea Tufis Internal Review 0.3
26.05.2020 Alexander Grass,

Lukas Helminger,
Fabian Schmid

Final Version (incorporated
reviews)

1.0

Page 1 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Executive Summary
This deliverable D5.11 - Protocols for Privacy-Preserving Data Analytics and Secure Lead-
Time Based Pricing v2/2 - is an update of D5.4. It is the final outcome of task T5.2 and of great
importance to achieve milestone MS8. This task was concerned to develop suitable protocols
for the Safe-DEED use-cases based on protocols developed and knowledge gained in task T5.1.
The protocols from this deliverable will provide the functionality required by the work pack-
ages WP4, WP6, and WP7. The deliverable consists of a demonstrator and this report. The
demonstrator can be divided into two components.

The Private Selective Aggregation (PSA) library is based on earlier research efforts (see
D5.8 and D5.9). This lightweight library shows that privacy-preserving computations can even
be done in the browser. The PSA library is a prime example of privacy by design. It offers a
chance for data minimization. The plan is to integrate the PSA into Safe-DEED’s data valuation
component developed in WP4.

The secure lead-time based price protocol (SLTBP) introduced in deliverable D5.4 was de-
veloped further. The pricing function was jointly developed by multi-party computation (MPC)
and lead-time pricing experts. In this way, it was guaranteed that on the one side, the pricing
functions reflect the real-world and, on the other side, are MPC-friendly, i.e., (relative) effi-
ciently computable. The report contains the results of extensive benchmarking tests in various
settings to show the scalability of the SLTBP protocol.

Page 2 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Table of Contents
1 Introduction 5

1.1 Related Documents . 5
1.2 Roadmap . 5

2 Privacy-Preserving Data Analytics 6
2.1 Usage . 6

2.1.1 Logical separation . 7
2.2 Privacy-Preserving Questionnaire . 8
2.3 Benchmarks . 9
2.4 Further Use Case: Risk Assessment . 10

2.4.1 Installing . 11
2.4.2 Running . 11

3 Secure Lead-Time Based Pricing (SLTBP) 13
3.1 Introduction and Update . 13
3.2 Implementation . 13

3.2.1 Class Structure . 13
3.2.2 The MPC Protocol . 16
3.2.3 Pricing Protocols . 17
3.2.4 Installing the Toolchain . 19

3.3 Running different setups . 19
3.4 Benchmarking . 20

4 Conclusion 25

5 References 26

Page 3 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

List of Figures
Fig.1 The PSA library seperated into its logical components. 7
Fig.2 A high-level visualization of the private rating obtaining process at Eurecat. 9
Fig.3 PSA runtime of JavaScript implementation compared to C++; matrix of size

16384×8912 . 10
Fig.4 PSA applied to the area of investments. 11
Fig.5 Class Diagram of the Application package 14
Fig.6 Class Diagram of the util package . 15
Fig.7 Impact of products on runtime (LAN) . 22
Fig.8 Impact of products on networking (LAN) 22
Fig.9 Impact of players on runtime (LAN) . 23
Fig.10 Impact of players on networking (LAN) 23
Fig.11 Impact of products on runtime (WAN) . 24
Fig.12 Impact of products on networking (WAN) 24
Fig.13 Impact of players on runtime (WAN) . 25
Fig.14 Impact of players on Networking (WAN) 25

Abbreviations

API Application Programming Interface
ATP Available to Promise
DVC Data Valuation Component
FRESCO Framework for Efficient and Secure Computation
LTBP Lead-Time Based Pricing
MASCOT Faster Malicious Arithmetic Secure Computation with Oblivious Transfer
MPC Multi-Party Computation
NPM Node Package Manager
PSA Private Selective Aggregation
SLTBP Secure Lead-Time Based Pricing
SPDZ MPC Protocol of Smart, Pastro, Damgard, and Zakarias
SPDZ2k SPDZ mod 2k

TLS Transport Layer Security
WAN Wide Area Network

Page 4 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

1 Introduction
The purpose of this deliverable is to report on the cryptographic protocols developed for privacy-
preserving data analytics and secure lead-time based pricing. It provides a demonstrator con-
sisting of two independent software libraries. The PSA library is a versatile privacy-enhancing
protocol. It is planned to integrate the library into the Data Valuation Component (DVC) in
WP4. The DVC use is best shown in the Safe DEED’s WP6 demonstrator. The SLTBP protocol
was developed to improve price and delivery time in the semiconductor business. This report
aims to make the software libraries more accessible by describing their functionalities, provid-
ing information on design choices as well as performance, and how they benefit Safe-DEED
objectives.

1.1 Related Documents
Deliverable D5.11 is the updated version of D5.4. One part of D5.11 is based on the protocols
of deliverable D5.8 and their implementations in D5.9. The other part is highly influenced by
the pricing algorithms described in deliverable D7.5 and D7.10 from WP7.

1.2 Roadmap
This report is divided into two main parts. First, in Section 2, we describe the updates in the
area of privacy-preserving data analytics. More concretely, we report on the progress of the
PSA library, scalability, and how we plan to integrate it into WP4’s data valuation component.
Secondly, in Section 3, we give an extensive overview of the updated SLTBP protocol, including
rigorous benchmarks. In Section 4, we sum up our findings and examine how the protocols
could be used in the future.

Page 5 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

2 Privacy-Preserving Data Analytics
This section describes the progress of the PSA protocol. We developed a fully operating Web-
library, a prerequisite for integration into Safe-DEED data analytics components. The bench-
marks show that although there is a significant overhead resulting from the privacy-enhancing
technologies, there are several possible use-cases. To see better how PSA can be applied outside
from Safe-DEED, we constructed an additional use case in the finance sector.

All of the following subsections are based on Alexander’s Grass master’s thesis [1]. It
was conducted while Alexander Grass was working in Safe-DEED and also co-supervised by
Safe-DEED researchers. The thesis was successfully defended on the 29th of April and will
be published soon by the TU Graz1. For a very detailed explanation of PSA, its use, and the
technical details, we refer to the master thesis.

2.1 Usage

The library is publicly available and accessible by the Node Package Manager (NPM)2. It can
be used in any node-powered environment that supports package management by any typical
managers like NPM or yarn. This includes React, Angular, Express.js applications, and many
more. The PSA library is installed by running npm i psa-lib from the command line so
that the bundle gets registered in the corresponding package.json file. The library’s interface is
intuitive and user-friendly. The source code, together with API documentation, is available in
the official GitHub repository3.

In the Readme, we discuss the library’s installation procedure and give a precise description
of implementation details. If a user already knows which application to build on top of the PSA
library, all relevant information can be found in the repository. However, if a user is unsure
which problems this library is most suited to solve, the following section gives an overview
of different possibilities. We summarize the essential information in respect of developing
applications with the library:

1. Client and Server agree on a set of parameters in advance

2. Client and Server instantiate the library on their end (e.g., import PSA from ’psa-lib’)

3. Client and Server create a corresponding context with the parameters agreed on

4. Client passes his data to the library for encryption

5. Client transmits resulting encrypted vector to the Server

6. Server passes his matrix and the Client’s encrypted vector to the library and computes the
result vector

7. Server sends result vector back to the Client

8. Client decrypts the resulting vector to obtain the result in plain form
1https://search-tug.obvsg.at/primo-explore/search?vid=TUG
2https://www.npmjs.com/package/psa-lib
3https://github.com/Safe-DEED/PSA

Page 6 of 26

https://search-tug.obvsg.at/primo-explore/search?vid=TUG

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

2.1.1 Logical separation

To understand the mechanics and, in further consequence, the proper application of the PSA
library, it is most helpful to separate the library into logical components. The constituents are
states, environments, inputs, and outputs. A depiction of the mentioned separation is given in
Figure 1

Figure 1: The PSA library seperated into its logical components.

States. There is a direct control flow from the start of the protocol to the end on a very high
abstraction level. In between, there are the following states which mainly depend on a previous
state:

1. Context Creation

2. Encryption

3. Computation

4. Decryption

Every state is associated with executing a set of tasks that are not crucial at this abstraction level.
Although all state transitions happen sequentially, they do not occur in the same environment.

Page 7 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Environments. An environment is a context in which a particular instance of the library is
running. There are two contexts, Client and Server, which need to be separately initialized
since the objects obtained from the initialization carry different data. During initialization in
the client context, a secret key pair is generated among other keys like the Galois keys and
re-linearization keys. These keys are later needed in the process and are not generated on the
Server’s end. Running client functions with a server context object would result in an error.
Due to this slightly different initialization step and inherently the functions that can be run
in a specific context, we differentiate between these two contexts. The Server takes a whole
different part in the protocol compared to the Client, and the underlying executing platform can
be technically different. The user only needs to know whether a particular instance of the library
should run in a client or server environment. The library then handles the technical discrepancy.
The user of the library is not required to run the code in the browser or on a Node.js platform.
For technical details, we refer to the thesis.

Inputs and Outputs. Since PSA is a protocol that demands interaction between two parties,
state transitions and their outputs depend on specific inputs. Obtaining the required inputs
need inter-environment communication, which is often performed over untrusted networks. The
library does not handle the network part since this is highly dependent on the application and
should remain the library user’s responsibility. The library’s function calls yield objects which
should be marshaled and sent to the opposing party.

Parameters. Choosing suitable parameters for the PSA library is not trivial and requires care-
ful consideration of the application’s characteristics and knowledge of advanced cryptographic
primitives. In the thesis, there is a technical section describing the process of choosing parame-
ters for non-cryptographic experts (but still a technical section).

2.2 Privacy-Preserving Questionnaire
We have explained the use case and the motivation of the privacy-preserving questionnaire
arising from the DVC (WP4) in Safe-DEED D5.8. Here, we only describe the use case with
regards to the PSA library.

Subject A, who could be an institution or an individual who, wants to acquire a quality rating
for a dataset. Eurecat does offer a private rating process, and A would like to make use of it.
A visits Eurecat’s website and fills out the questionnaire that holds a couple of questions about
the data. After checking some boxes and assigning values, A clicks the go-button and waits for
a result. Meanwhile, the questionnaire is converted into numerical form by applying a function
that maps the answers to an array (vector) of fixed numbers. After that, the array is locally
encrypted in A’s browser and sent to the Server running at Eurecat’s end. The Server holds a
scoring table that maps every answer to a score. All scores are summed up and aggregated in a
final score. Note that the scoring table is matched with the answers homomorphically, that is,
in the encrypted domain. The Server does not learn anything about the answers. The scoring
table is the matrix used to compute a linear transformation (assigning a score for each answer)
on A’s encrypted array. The result is still encrypted and sent back to A, where it gets decrypted
by A and is ready to be further inspected.

Page 8 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Eurecat does not learn anything, not even the final rating, although their users are the ones
who provide the rating in the first place. This procedure is depicted in Figure 2. It seems

Figure 2: A high-level visualization of the private rating obtaining process at Eurecat.

controversial to rate data without even knowing the rating in the end. This is the power of a
system based on Homomorphic Encryption. Eurecat has a fixed matrix that is used to apply
a linear transformation on A’s answer vector. Not all of A’s answers have the same impact on
the value of the data. Therefore some answers add more value to the overall quality. Thus, the
transformation could be seen as a way of applying weights to every answer and summing them
up in the end. This transformation entirely happens in the encrypted domain. Eurecat knows
how the answers at A’s end are formated and encrypted before transmission and relies on this
form when processing the data at the server end. The most crucial part of this whole system is
to define the matrix such that it will produce a reasonable rating for a set of answers.

2.3 Benchmarks
The PSA library’s runtime solely depends on the number of encrypted multiplications between
the input vector and the matrix. So we will focus on the vector-matrix multiplication’s perfor-

Page 9 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

mance. All other tasks, including the client-side’s homomorphic encryption, are negligible in
terms of runtime.

The JavaScript version is slower by a factor of six compared to the C++ version, see (Fig-
ure 3). However, data sets of similar sizes as those in Safe-DEED, this overhead does not pose
a problem and, is general outweighed by the easy integration of JavaScript into existing ap-
plications. For example, around 8000 questionnaires with around 16000 questions could be
processed in one matrix multiplication (10 minutes). One could also use a smaller matrix for
the questionnaire to reduce the runtime, but for the benchmark, we wanted to show the limits
of the PSA library. For a more detailed discussion of the benchmarks, please consult the master
thesis.

Figure 3: PSA runtime of JavaScript implementation compared to C++; matrix of size
16384×8912

2.4 Further Use Case: Risk Assessment
PSA can be used for risk assessments. It improves the companies’ ability to estimate investment
risks. The parties in this scenario are, on the one hand, a financial institution (server) that is
aware of the credit standing and financial stability of a large pool of customers, and on the other
hand, a company (client) that plans to make an investment.

In this case, the financial institution has knowledge about the credit scores of various stake-
holders. The company can then ask about the credit score of stakeholders that are of interest
in the light of its upcoming investment. Thereby the company can better predict the risk of the
investment. This process is depicted in Figure 4. The benefit of using the PSA protocol is that
the company can keep its investment idea a secret on the one side, while on the other side, that
the financial institution only gives away aggregated information about stakeholders.

Page 10 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Figure 4: PSA applied to the area of investments.

2.4.1 Installing

As we exceeded the file size limits, the code is available on Zenodo at the following location
https://zenodo.org/record/4742122.

Do not make any changes to the folder structure and execute all commands in the root
folder. We need to have NodeJS and Node Package Manager installed on the executing machine.
Usually, NPM is installed automatically with NodeJS. The commands needed to start the test
server are the following in that exact order:

• npm run init

• npm run dev

After that, the web app is launched in the browser at http://localhost:3000.

2.4.2 Running

We will now walk the reader through the process, starting at the main page of the web app. We
will have to provide some input files, which can all be found in the folder input-files.

1. In the main window, we see one button for the client and one for the server. When testing
the application, we recommend opening two separate browser tabs: One for the client part
http://localhost:3000/client and one for the server part http://localhost:3000/server.

Page 11 of 26

https://zenodo.org/record/4742122
https://nodejs.org/en/
https://www.npmjs.com/get-npm

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

2. In server’s tab, we browse for the credit ratings file ratings.csv. Then, we start the
process by clicking on the button below.

3. In the client’s tab we browse for the identifiers file customers IBANS.csv. This file con-
tains the identifiers for which the client is interested. After clicking start, the protocol’s
execution begins. The aggregated ratings are displayed at the client side after termination.

Page 12 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

3 Secure Lead-Time Based Pricing (SLTBP)

3.1 Introduction and Update
This project focused on Secure Lead-Time based pricing (SLTBP). In our setting, we have a big
enterprise vendor and many small client companies. After several iterations of improvements,
the following structure emerged:

The protocol accepts an arbitrary number of input products. Each product information con-
tains a delivery date, a price, and a volume. Both the clients and the vendor have to provide this
information for each product. Then, all parties evaluate every individual product in two stages.

In the first stage, the clients aggregate their input securely. They compute the sum of their
volumes on the one hand and the complete price offer for it on the other hand. The aggregation
step also determines the fastest delivery time (i.e., the lowest date value of the client inputs).
The protocol terminates if the volume entry of the vendor is smaller than the aggregated amount
of the clients.

The second phase of the protocol determines the pricing of the product. In LTBP, the price
is determined by the delivery date. The use case partner from WP7 provided four possible
candidate functions to determine the pricing of a product. All of them calculate the difference
in delivery time and derive a price premium from it. Finally, the parties check whether the
aggregated price offer meets the requirements imposed by the delivery time and the original
price.

3.2 Implementation
We elaborated on the toolchain of maven and Fresco in the previous deliverable D5.4. How-
ever, now we want to give an overview of the implementation. Focusing on the program’s
recent changes, we will describe the class structure, the current versions of our algorithms, and
additional building blocks implemented. The current version of the program focuses on high
flexibility in the price calculation. We did not have access to the final Lead-Time Based Pric-
ing algorithm at the time of implementation. Hence, we decided to design a generic approach
to make pricing algorithms interchangeable. As extensions of this generic base class, we also
provide four basic pricing implementations based on a previous deliverable by WP7. Since we
cannot disclose deliverable 7.5, we will cover the necessary information.

In addition to the protocol itself, we developed several helper classes for ease of implemen-
tation in MPC. Finally, we added TLS support to have realistic test results in the WAN setting.

3.2.1 Class Structure

In contrast to previous versions, the project consists of two packages: the Application and the
Util package. The Application package represents a merge of the server and client functional-
ities. It is sufficient to differentiate between the two at runtime, as they fundamentally have to
perform the same operations. On the other hand, the Util package provides handlers for secret
shared values, networking, and often used helper MPC protocols.

Page 13 of 26

https://safe-deed.eu/wp-content/uploads/2020/08/D5_4.pdf

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Figure 5: Class Diagram of the Application package

The Application Package. In Figure 5, we can see the classes of the application package and
their inheritances. The PriceFinder is our entry point to this demonstrator. Here, we set up
the framework and initialize the protocols, selecting the mode, in which we want to run the
application. These settings include security parameters, algorithm choice, networking settings,
input files, and possible command-line interface setup.

PriceProtocol is the previously mentioned abstract class for price calculations. One can
find our implementations of the pricing protocols in the following extensions: LinearProtocol,
ConvexProtocol, BucketProtocol, and ConcaveProtocol. All are named by their distinct
shape of the pricing function. AggregateInputs contains the first phase of our protocol.
There, we aggregate the orders, select the date and compare the volumes. The Application,
Computation, and ProtocolBuilder Interfaces are part of FRESCO4 but included for com-
pleteness. An implementation of the Application Interface represents a runnable MPC protocol.

Finally, the DateHostBuilder uses the builder pattern to construct a SecretDateHost
instance. This instance then runs the aggregated input protocol and the selected price protocol.
If benchmarking is set, the PriceProtocolBenchmark class runs all the pricing protocols and
measures time and network usage.

The Utility(util) Package. The second package in Figure 6 contains the utility and helper
classes and their inheritances.

MultApplication and SIntComparator are both small MPC helper protocols. While

4https://fresco.readthedocs.io/en/latest/

Page 14 of 26

https://fresco.readthedocs.io/en/latest/

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Figure 6: Class Diagram of the util package

MultApplication only presents a wrapper to a secret share multiplication, SIntComparator
also implements the Comparator Interface. This implementation allows us to do sorting oper-
ations on data structures using the Java Comparator interface.

Next, there are the networking classes

• NetworkManager

• SocketNetwork

• NetworkLoggingDecorator

• TLSConnector

• Sender

• Receiver

The NetworkLoggingDecorator uses the decorator pattern and tracks data usage for bench-
marking. The more practical NetworkManager acts as a container class for different network in-
stances. When creating a new network, the workflow is as follows. First, the NetworkManager
creates a SocketNetwork object. This object then creates the TLSConnector to connect to all
the parties in the network configuration. The TLSConnector creates sockets for each peer and

Page 15 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

also verifies them according to the pre-shared certificates. Finally, the SocketNetwork spawns
a Sender and a Receiver thread for each other party.

The BenchmarkHandler and CmdLineParser are pure utility classes. The handler allows
the generation of different timer instances and retrieves the networking data from the decorator.
It generates the JSON output required by the benchmarking platform. The CmdLineParser is
currently not used. In the earlier versions, we passed all the settings, be it security or input, as
a command-line argument. As the list grew, we switched to file-based data input and settings
determined at compile time. However, we kept the functionality if we want to switch back to a
more versatile program. (i.e., if we’re going to run the program with different security settings
without wanting to recompile)

We developed the builder abstraction in the form of FRESCOBuilder and MPCBuilder for
earlier versions of FRESCO. Back then, a large amount of boilerplate code was necessary
to start the framework with the secure MASCOT [5] preprocessing strategy and Naor Pinkas
Oblivious transfer5 enabled. These classes are still in use in the current version, as the setup of
our implementation relies on their structure. The MPCBuilder then initializes fields relevant to
the protocol.

3.2.2 The MPC Protocol

We based our demonstrator on FRESCO. In this chapter, we want to state the concrete instanti-
ation of the framework we use. As mentioned before, we work in the arithmetic domain. More
precisely, we use the SPDZ [3] protocol suite, with MASCOT preprocessing and Naor Pinkas
oblivious transfer. This setup gives us malicious security with a significant performance penalty.

FRESCO does not provide the functionality to switch between binary and arithmetic data
types. Hence, we were limited to either SPDZ or SPDZ2k. And since comparisons are only
possible with SPDZ, we made our choice.

The setup of our protocol happens in the PriceFinder class. The following list shows the
essential parameters for setting up the correct instance:

5http://www.pinkas.net/ot.html

Page 16 of 26

http://www.pinkas.net/ot.html

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Type Name Description
boolean logging Enables debug output throughout the appli-

cation
boolean debug Runs all pricing protocols in plain to check

results
boolean benchmark Runs all pricing protocols after one another

and tracks their time and network usage
Enum EvaluationProtocol Defines the pricing protocol to run, if bench-

mark is disabled
Enum PreprocessingStrategy Defines source of multiplication triples.

Must be set to MASCOT for secure compu-
tations

Enum ObliviousTransferProtocol Must be set to Naor, to enable the secure
Naor Pinkas OT protocol

int maxBitLength Defines the maximum bit length of secret
shared values

int modBitLength Defines the bit length of the modulus

3.2.3 Pricing Protocols

The pricing algorithms represent the core part of our protocol. As mentioned above, we have
implemented four different versions to compare them better. Our partners presented the formal
specification of the algorithms in deliverable D7.5. We then jointly worked on making the
pricing function MPC-friendly, i.e., reducing computational steps that are hard to compute in
MPC while not using the utility of the pricing functions.

We decided to implement the unoptimized pricing function to use it as a baseline for eval-
uating the performance of the other functions. This way, we can make generic performance
statements about the different types. These more primitive functions serve as building blocks
and can be combined to fit the needs of a vendor.

The performance impact of the inputs is also worth mentioning. If the ordered volume or
date is higher than the server volume or date, the protocol terminates early. However, if the
whole protocol runs, the participants’ input does not influence the runtime or network traffic. If
the input would influence either of those metrics, an attacker could infer information about that
input. Such a side-channel cannot be possible in an information theoretic setting as in SPDZ
[2].

• The common parameters of each protocol are the following:
SDT: standard delivery time. The time input of the server.
OLT: ordered lead time. The common order time of the clients. Must be greater than 0
and smaller than SDT
Phost : The price input of the host, for the standard delivery time.
Pnew: The new price calculated regarding the shorter delivery time.

• Linear: The linear protocol in D7.5 presents a formula calculating the price premium.

Page 17 of 26

https://safe-deed.eu/deliverables/

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Here, we only made adaptations to the order of execution.

Pnew =
(SDT −OLT)Phost

SLT
+Phost

• Concave: Since we perform our computations in the integer domain, we made some
changes to the logarithm-based algorithms. The newly introduced exponentiation step
allows for higher precision in the price calculation, as intermediate results are not rounded
as much. We can still show that our adaptations are not changing the original formula
from D7.5.

Pnew =
log((100(SDT −OLT))10)− log(SDT 10)

20
Phost

=
10log(100(SDT −OLT))−10log(SDT)

20
Phost

=
(

log(100(SDT −OLT))− log(SDT)
)
Phost ·0.5

= log
(

100
SDT −OLT

SDT

)
Phost ·0.5

We also assert a fixed ceiling of 100% price increase.

• Convex: Beginning at the formula we use in our implementation, we show that it is equal
to the one presented in D7.5.

Pnew =
log(SDT 10)− log(OLT 10)

20
Phost

=
10log(SDT)−10log(OLT)

20
Phost

=
(

log(SDT)− log(OLT)
)
Phost ·0.5

= log
(

SDT
OLT

)
Phost ·0.5

• Bucket: The Bucket protocol sorts the delivery speedups into distinct buckets. In the
bucket protocol we left out the final entry in the table in Figure 6 of D7.5(The table is
depicted below). We did this, as the delivery cannot be more than 100% faster and we
excluded the case of same day delivery (i.e., OLT being zero).

This leaves us with eight distinct cases. We perform a binary search with three compar-
isons. In the end, only the bucket is revealed to all participants.

Page 18 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Buckets Price Premium
0% < x < 10% 0%
10% < x < 20% 2%
20% < x < 35% 5%
35% < x < 50% 10%
50% < x < 65% 20%
65% < x < 80% 40%
80% < x < 90% 80%
90% < x < 100% 90%
100% < x 100%

3.2.4 Installing the Toolchain

This project was developed with Ubuntu. In the root folder, there is a Dockerfile, simplifying
the installation process. When Docker is installed and added to your PATH, the following
commands will run the program. Note: depending on the installation of docker, the following
commands might have to be executed with root.

1. docker build -t sltbp . This will build and install the Docker image

2. docker run -i sltbp This will run the Docker image using the docker daemon in in-
teractive mode.

3. make all This will install and run the setup specified in the Makefile, inside the Docker
container.

To run the program from the command line, we suggest installing the following programs with:
sudo apt-get install -y <program>

• openjdk-11-jdk

• maven

• make

After installing the requirements, go to the root directory and run the program with make all
This will compile the program, install all dependencies, create the file structure for testing and
run the setup specified in the Makefile.

3.3 Running different setups
The Makefile mentioned above helps us simulate multiple parties locally. In this chapter, we
give a quick overview of the different settings.

Page 19 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Network Configurations The SLTBP protocol uses a TLS peer-to-peer socket network. Hence,
we need to set up our keys and certificates appropriately before we can start. In the direc-
tory SecStores, we provide a small shell script that does this job. We need to run bash
genstores.sh <no of parties>. The following procedure creates Java keystores and cer-
tificates for all parties and a Java truststore which all parties share. The script then copies the
key materials in the resources folder of our utils package, making it accessible at runtime. The
second major component of our networking configuration is the NetworkConfig.json found
in the servers directory structure. The config file of each participant must contain an entry for
each party, including itself. The ids are defined to be given in ascending order, while the host
has id = 1. An entry must further contain the IP and Port information of the other parties.
Finally, the field my id signals that an entry describes my network properties.

Protocol input We have already touched on the topic of protocol inputs in the introduction.
Now we want to give a quick overview of how we can change these settings. Next to the
Network Configuration file, each party expects an ATP Unit JSON file, as seen in the server’s
directory structure. In general, the protocol supports an arbitrary number of input units. How-
ever, each party must have the same amount of product entries and the same sales positions. In
other words, each participant must bid for each product, and the sales position is the identifier
of a product. When meeting these preconditions, everyone can set their delivery Date in days,
their amount, and their price as strings of integers. The date value cannot be zero, as the design
excluded same-day delivery.

3.4 Benchmarking
Next to local machine tests, we wanted to analyze our protocol in the LAN and WAN settings.
The LAN setting helps us to test the performance in general, while the WAN setting really
simulates a real-world scenario. We were particularly interested in the runtime and network
traffic impacts of the number of parties and the number of products for both configurations.
On the one hand, we Further, we want to compare the different shapes of pricing functions
considering these metrics.

Results: Running our tests showed precise results. When we increase the number of players,
this results in a quadratic increase in runtime and network usage. In comparison, the runtime
and network impact of the products in the protocol is linear. In the following table, we give an
overview of our results. We show the resulting graphs further down (fig. 7 to fig. 14).

Networking No. of Players No. of Products max Runtime max traffic
LAN 3 . . .10 1 10h 14GB
LAN 3 1 . . .10 2h 16GB
WAN 3 . . .6 1 6h 6GB
WAN 3 1 . . .10 12h 16GB

Interpreting the table In the table, we see the three different ways in which we performed
our benchmarks. Firstly, we ran all tests both in the LAN and in the WAN setting. Secondly,
when measuring the impact of the players, we increased the number of players and kept the

Page 20 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

number of products constant. We started at the internal fixed minimum of three players since
we defined this threshold for security reasons. In a two-party setting, the vendor party could
infer the input of the vendee after the result is disclosed. In the LAN setting, we increased the
number of players up to ten to gain a good impression. However, we ran into an internal timeout
in one of our sub-protocols at seven players with the WAN configuration. But, we can already
see the expected impact on runtime and network traffic. Lastly, we tested the products’ input by
keeping the player number at three and increasing the products from one to ten. We computed
all of our experiments on a Xeon(R) CPU E5-2660 v3 @ 2.60GHz. Each player of the protocol
had a core reserved. We created an artificial WAN setup on the server.

Further improvements In our implementation, we allow for a wide range of players and a
wide range in the number of products. It is possible to increase performance by fine-tuning the
protocols to a specific context. Nevertheless, the quadratic growth property will remain.

The impact of the individual pricing protocols is smaller than expected. However, the dif-
ferences between the protocols are less impactful since they share the same aggregation and
evaluation step. As we can see in our graphs, the Concave and the Covex protocol are nearly
identical in terms of runtime and network traffic. A little bit below is the bucket protocol and
by far the fastest is the linear pricing calculation.

In conclusion, we see several ways to improve the performance of this proof-of-concept
demonstrator. FRESCO allowed us to develop a functioning demonstrator quickly. However,
we were very limited in the algorithms we could choose. For our use case, we could only
use SPDZ, with MASCOT preprocessing and NAOR Pinkas OT. Secondly, Java as a platform
presents an overhead as well. Working with a more low-level language like C++ would be ben-
eficial ([4]). Finally, as mentioned above, after designing a final protocol for price calculation,
the code can be fine-tuned to meet specific requirements.

Page 21 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Figure 7: Impact of products on runtime (LAN)

Figure 8: Impact of products on networking (LAN)

Page 22 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Figure 9: Impact of players on runtime (LAN)

Figure 10: Impact of players on networking (LAN)

Page 23 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Figure 11: Impact of products on runtime (WAN)

Figure 12: Impact of products on networking (WAN)

Page 24 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

Figure 13: Impact of players on runtime (WAN)

Figure 14: Impact of players on Networking (WAN)

4 Conclusion
This deliverable contains two demonstrations of secure computation protocols. In this accom-
panying report, we described their functionalities and their performance, respectively, their scal-
ability. Concerning their applicability to real-world scenarios, our conclusion is: it depends.

We can see that the light-weight PSA library can even be used on the web to perform secure
computations on the client-side. As we move towards more complex and use-case-specific
computations, the overhead of MPC is clearly felt. In such use cases, we recommend checking if

Page 25 of 26

D5.11 - Protocols for Privacy-Preserving Data Analytics and SLTBP v2/2

semi-honest trust assumptions are sufficient. This could be the case if the participants have long-
term interests or there exists complementary legal contracts. Nevertheless, our demonstrator
shows that secure computations can be efficient enough. Although complex scenarios still need
careful design and engineering.

For the remaining time of the project, we will focus on assisting the use case partners in
integrating the two secure computation protocols into their systems.

5 References

[1] Grass Alexander. Evaluation of private selective aggregation in the web and its application
in real-world scenarios, 2021.

[2] I. Damgard, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat
homomorphic encryption. Cryptology ePrint Archive, Report 2011/535, 2011. https:
//eprint.iacr.org/2011/535.

[3] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P
Smart. Practical covertly secure mpc for dishonest majority–or: breaking the spdz limits.
In European Symposium on Research in Computer Security, pages 1–18. Springer, 2013.

[4] Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. Cryptology
ePrint Archive, Report 2020/521, 2020. https://eprint.iacr.org/2020/521.

[5] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: faster malicious arithmetic
secure computation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 830–842, 2016.

Page 26 of 26

https://eprint.iacr.org/2011/535
https://eprint.iacr.org/2011/535
https://eprint.iacr.org/2020/521

	Introduction
	Related Documents
	Roadmap

	Privacy-Preserving Data Analytics
	Usage
	Logical separation

	Privacy-Preserving Questionnaire
	Benchmarks
	Further Use Case: Risk Assessment
	Installing
	Running

	Secure Lead-Time Based Pricing (SLTBP)
	Introduction and Update
	Implementation
	Class Structure
	The MPC Protocol
	Pricing Protocols
	Installing the Toolchain

	Running different setups
	Benchmarking

	Conclusion
	References

