
Grant Agreement Number: 825225

Safe-DEED

www.safe-deed.eu

D5.12 - Implementation of cryptographic building
blocks and specialized protocols v3/3

Deliverable number D5.12

Dissemination level Public

Delivery data due 30.11.2021

Status Final

Authors Lukas Helminger, Stefan Lontschar, Fabian Schmid

This project has received funding from the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 825225.

D5.12 - Implementation of cryptographic building blocks v3/3

Changes Summary

Date Author Summary Version
08.10.2021 Fabian Schmid SLTBP Section 0.1
19.10.2021 Stefan Lontschar PSI Section 0.2
21.10.2021 Fabian Schmid PSA Section 0.3
25.10.2021 Stefan Lontschar PSI Benchmarks 0.4
02.11.2021 Stefan Lontschar PSI library 0.5
03.11.2021 Lukas Helminger Intro, Conclusion 0.6
04.11.2021 Lukas Helminger Executive summary 0.7
15.11.2021 Abdel Aziz Taha (RSA) Safe-DEED Internal Review 0.8
23.11.2021 Lukas Helminger Final Editing 1.0

Page 1 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

Executive Summary
This deliverable - D5.12 Implementation of cryptographic building blocks and specialized pro-
tocols v3 - is the final software result of Safe-DEED’s WP5 in the form of a demonstrator. This
report provides an update and an overview of the integration of three major secure computation
components - a private set intersection (PSI) library, a private, selective aggregation library, and
a secure lead-time-based pricing program - deployed in Safe-DEED.

This demonstrator consists of a new PSI library developed together with the EU Horizon
2020 project TRUSTS. The previous version lacked scalability for enterprise-scale data sets.
The new version is business-friendly and focuses on performance and reliability. In this docu-
ment, we report on extensive real-world performance experiments that show scalability - around
10x times faster than the old solution.

The task for the other two software components was to integrate them into the existing busi-
ness environment and processes. The Private Selective Aggregation library was successfully
integrated into WP4’s Data Valuation Component. The web-based solution allows users of the
Data Valuation Component to protect their answers to the questionnaire with homomorphic
encryption without compromising the accuracy of the result.

For the Secure Lead-Time-Based Pricing - together with the use case partner in WP7 - we
bridged the gap between WP5’s command-line program to WP7 graphic user interface. This
report describes the integration process as well as a Docker version to run the program as a
stand-alone application.

Page 2 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

Table of Contents
1 Introduction 5

1.1 Private Set Intersection (PSI) . 5
1.2 Private Selective Aggregation (PSA) . 5
1.3 Secure Lead-Time Based Pricing (SLTBP) . 5

2 PSI Library 6
2.1 Technical Overview of the PSI Library . 6
2.2 Performance Evaluation . 6
2.3 Running the Library . 9

3 PSA Library 13
3.1 PSA Integration Caveats . 13

4 Secure Lead-Time-Based Pricing 15
4.1 Running the Demonstrator . 15

4.1.1 Linux . 15
4.1.2 Docker . 15

4.2 Integration of the Code . 16
4.3 Recent Changes . 19

5 Conclusion 20

6 References 20

Page 3 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

List of Figures
Fig.1 Runtime of the PSI library for symmetric sets (# of client items = # of server

items) in different networking configurations. 7
Fig.2 Runtime of the old PSI library from D5.4 for symmetric sets (# of client

items = # of server items) in different networking configurations. 8
Fig.3 Browser to Browser PSA Architecture . 13
Fig.4 Browser to Node PSA Architecture . 14
Fig.5 Interface to create ATPUnits.json . 18
Fig.6 Interface view during MPC computation 18
Fig.7 Interface showing result of accepted orders.json 19

Abbreviations

ATP Available to Promise
DVC Data Valuation Component
FRESCO Framework for Efficient and Secure Computation
GUI Graphical User Interface
SLTBP Secure Lead-Time Based Pricing
JRE Java Runtime Environment
JDK Java Development Kit
JSON JavaScript Object Notation
PSA Private Selective Aggregation
PSI Private Set Intersection
TLS Transport Layer Security

Page 4 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

1 Introduction
The purpose of this deliverable is to report on the implementation and integration of crypto-
graphic protocols deployed in Safe-DEED. It provides a demonstrator consisting of three in-
dependent software libraries and this corresponding report. This report is divided into three
sections, each describing one of the software components.

1.1 Private Set Intersection (PSI)
We presented our Private Set Intersection (PSI) library in the previous deliverable D5.4. This
first version of the library was using a Java PSI library, with the core of the cryptographic
operations being executed by a component written in C++. While this previous implementation
was sufficient for the purpose of building a small library, further integration work has shown
that the performance and stability of the Java PSI library was lacking for enterprise-scale data
sets. To combat these issues, a new version of the PSI functionality was developed from scratch
in cooperation with the EU Horizon 2020 project TRUSTS1. The focus was put on performance
and reliability. The new version was successfully integrated into the WP6 demonstrator2. In
addition, the PSI library was added to the EUHubs4Data catalog3.

1.2 Private Selective Aggregation (PSA)

We presented our Private Selective Aggregation (PSA) library4 in the previous deliverables.
D5.8 described the theoretical foundations, whereas D5.9 discussed the first implementations
efforts. D5.11 offers a web-based solution and a detailed description of how it can be used in
Eurecat’s Data Valuation Component (DVC). This deliverable focuses on the integration of the
library as a software component into the DVC.

1.3 Secure Lead-Time Based Pricing (SLTBP)
This section focuses on the integration of the Secure Lead-Time-based pricing (SLTBP) demon-
strator. We have discussed the initial program and its toolchain in deliverable D5.4. Then, we
have presented the follow-up developments in deliverable D5.11. Now, we want to give an
overview of the integration of the project and its usage. We developed the SLTBP java applica-
tion as a cryptographic compound, meaning that we optimized interaction with the program for
development. We provide a folder structure and appropriate ”make targets” to test the different
algorithms. The use case partner worked on a graphic user interface (GUI) to bridge the gap
between our program and end-users. In this deliverable, we will walk through the necessary
steps along the way and the improvements we made to facilitate integration. Finally, we want
to discuss the remaining challenges, first and foremost the performance issues.

1https://www.trusts-data.eu/
2https://demo.safe-deed.eu/
3https://euhubs4data.eu/services/know-psittacus-privacy-enhancing-technology-for-data-sharing/
4https://github.com/Safe-DEED/PSA

Page 5 of 20

https://www.trusts-data.eu/
https://demo.safe-deed.eu/
https://euhubs4data.eu/services/know-psittacus-privacy-enhancing-technology-for-data-sharing/
https://github.com/Safe-DEED/PSA

D5.12 - Implementation of cryptographic building blocks v3/3

2 PSI Library

2.1 Technical Overview of the PSI Library
In contrast to the first library (v1), we build the second PSI library (v2) in Rust. Rust is a
modern programming language with focus on performance and reliability. One of the main
important features of Rust is its focus on memory safety, with its borrow checker component
that ensures memory safety and removes large classes of common, often security-critical errors
such as use-after-free errors and buffer overflow erros.

Used private set intersection protocol. The previous library v1 used the PSI protocols de-
veloped for private mobile contact discovery of [2]. While these protocols can perform well for
large set sizes (up to multiple million elements), their relative internal complexity also makes
some aspects of the implementation more complex. Furthermore, if both datasets are relatively
small (less than one million elements each), the simpler protocol in [1], which is based on a
variant of Diffie-Hellman key agreement, can perform nearly as well computationally while al-
lowing for reduced communication overhead compared to the protocols in [2]. The basic nature
of the [1] protocol still follows the high-level description outlined in deliverable D5.4, Figure
1. In our implementation, we also apply some of the optimizations of [2] to the protocol of
[1], namely the use of a cuckoo-filter with small false positive probability and cuckoo filter
compression.

Implementation details. We additionally protect the communication channel between the
two parties using a TLS connection. For this, we use the rustls5 library, an implementation
of TLS in the Rust programming language. Our implementation allows for both, self-signed
certificates, as well as traditional public-key infrastructure. We use TLS version 1.3 per default.

2.2 Performance Evaluation
To objectively quantify the improvements of the new PSI library v2, we repeat and extend the
performance benchmarks previously carried out as part of deliverable D5.4.

We benchmark the previous library v1 as well as the new improved v2 one in multiple
settings:

• A setting where both parties are in the same network (e.g., the same datacenter, Frankfurt
in our case)

• Two settings where the two parties are in two separate geographical areas:

– Frankfurt-Paris

– Frankfurt-Ohio

The benchmarks were executed on Amazon Web Services (AWS) EC2 servers with both
parties running an Ubuntu Server 20.04 LTS image on a c5.xlarge configuration.

5https://github.com/rustls/rustls

Page 6 of 20

https://github.com/rustls/rustls

D5.12 - Implementation of cryptographic building blocks v3/3

101 102 103 104 105 106

10−2

10−1

100

101

102

Set Size

PS
Ie

xe
cu

tio
n

tim
e

(s
)

Frankfurt-Frankfurt
Frankfurt-Paris
Frankfurt-Ohio

Figure 1: Runtime of the PSI library for symmetric sets (# of client items = # of server
items) in different networking configurations.

We first show the runtime of the new PSI library in Figure 1 and the network communication
of the different parties in Table 1. We can see that for small set sizes, the additional latency in the
Frankfurt-Ohio scenario leads to an increased runtime, however, this small additional latency
is insignificant for larger set sizes and the three different networking scenarios are practically
identical in terms of runtime.

We compare to the previous PSI library prototype v1 included in D5.4. The runtime of
the old library v1 can be seen in Figure 2. We only benchmark small set sizes due to the
memory usage constraints of v1. The new PSI library v2 is usually about 10x times faster
than the old one, e.g., if both parties hold a set of 5 000 items, v2 takes about 0.39 seconds,
while v1 took 4.54s in the Frankfurt-Frankfurt scenario. We can also see that the old library v1
did not optimize the networking round-trips in Figure 2, as there is a large difference between
the different networking scenarios, e.g., for 5 000 items, the runtime in the Frankfurt-Frankfurt
scenario is 4.54s, while the runtime in the Frankfurt-Ohio scenario rises to 58.86s.

The underlying PSI protocol used in the PSI library v2 is suited to the scenario of imbalanced
set sizes6, where larger server set sizes are more beneficial for the protocol. This can be seen in
Table 2, where we repeat the same scenario twice with exchanged sets. Here, the run where the
server has the larger set size is faster, and additionally reduces the amount of data transferred
by a large amount.

6The server set size is larger than the client set size by order of magnitudes.

Page 7 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

Set size Server (KB) Client (KB)

10 1.60 1.99
50 4.38 6.05

100 7.81 11.08
500 34.07 50.14

1 000 66.07 98.14
5 000 322.39 482.62

10 000 650.58 971.01
50 000 3 213.71 4 815.70

100 000 6 417.66 9 621.60
500 000 32 048.94 48 068.52

1 000 000 64 087.98 96 127.09

Table 1: Communication sent by parties in the PSI library for symmetric sets (# of client
items = # of server items) in all networking configurations.

101 102 103

10−1

100

101

102

Set Size

PS
Ie

xe
cu

tio
n

tim
e

(s
)

Frankfurt-Frankfurt
Frankfurt-Paris
Frankfurt-Ohio

Figure 2: Runtime of the old PSI library from D5.4 for symmetric sets (# of client items =
of server items) in different networking configurations.

Ns Nc Runtime (s) Server (KB) Client (KB)

1 000 100 000 5.53 9 613.78 6 409.84
100 000 1 000 2.84 105.97 73.90

10 1 000 000 54.64 96 118.15 64 079.04
1 000 000 10 27.29 10.93 10.54

Table 2: Runtime and communication in the PSI library for asymmetric set sizes (server
set size Ns, client set size Nc) in the Frankfurt-Frankfurt networking scenario.

Page 8 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

2.3 Running the Library
The PSI library can be found in the accompanying psittacus-bin.zip. The information
below is repeated in the included Readme.md and running the binary with a --help argument
also prints a detailed usage message.

PSIttacus - Binary

This is a description on how to use the compiled version of PSIttacus. With the compiled
version it is possible to only write a configuration file in Yaml format, supply that to the binary
to start the PSI process. If a config file cannot be provided, all required attributes can also be
specified via a CLI. Then, two parties can securely calculate a set intersection without revealing
any data to the other party. Depending on the configuration the intersection can be revealed to
either or both parties as a result of the calculation.

The following examples currently need to be run from the source of this repository to work.
All paths specified should be relative to the calling directory.

Example config structure

log_level: Error

network:
address: 127.0.0.1:7878

psi:
is_server: true
data_file: data/micro.csv
result_file: intersection.csv
server_to_client_full_data: false
client_to_server_full_data: true

Configuration Attributes

• log level: Defines the level of information to be printed during the process. Possible
values are: Trace, Debug, Info, Warn and Error. Defaults to Error if not supplied.

• network: Section for settings related to networking

– address: Defines the socket as ip address:port the participant should connect to.
Server side creates a listener on this socket address and client side will connect to it.

– tls: Optional section for settings related to TLS

* allow pki: Defines if Mozilla PKI should be trusted and used. Either this
needs to be defined and true or trusted certificates need to be defined
for a client to be able to authenticate. Only valid for the client and defaults to
false if not defined.

Page 9 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

* trusted certificates: Should point to a .PEM file containing a trusted cer-
tificate chain used for authentication. Required for Server and Client if authen-
tication is mandatory.

* certificate chain: Points to a .PEM file containing the certificate chain to
be used during authentication process. Always required for the Server and only
required for the client if authentication will be done.

* key: Points to a .PEM file containing the key for the personal certificate that
is contained in the chain defined in the file of certificate chain. Always
required for the Server and only required for the client if authentication will be
done.

* require client auth: Defines if connecting clients need to authenticate in
order to connect to the server.

• psi: Settings related to the PSI protocol

– is server: Defines which side the party is going to pose as in the PSI process.

– batch size: The amount of messages that are being batched and sent together in
the internal OPRF calculation process. The default of 1024 should suffice for most
uses. Only required for the Client.

– data file: Path to the data file that should be used for set intersection calculation,
relative or absolute.

– result file: Path where the resulting intersection should be saved, relative or ab-
solute. Always required for the Client and also for the Server if client to server full data
is active.

– psi column: Defines which column-id of the provided data-set should be inter-
sected with the other parties data. Defaults to id if not provided.

– server to client full data: Defines if the result of the PSI process and all cor-
responding columns of each intersecting row should be sent from Server to Client
after the process. This field needs to be set identically for both participants for the
process to work and will be checked at the start.

– client to server full data: Defines if the result of the PSI process and all cor-
responding columns of each intersecting row should be sent from Client to Server
after the process. If this is set to true a result file path needs to be specified for
the server. This field needs to be set identically for both participants for the process
to work and will be checked at the start.

CLI Attributes All leaf attributes of the config file can also be provided to the binary via the
command line. Either complete or as single overrides over the config file.

General Usage

1. Prepare data to be processed in CSV format with an ID column (named id by default, can
be specified via the psi column configuration option). The intersection will happen on

Page 10 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

the ID column, with the other columns being associated information that can be optionally
exchanged after the intersection (which can be specified via server to client full data
and client to server full data config values).

2. Create config.yml file to be used by the binary according to the description in the sec-
tion ‘Example config structure‘ or specify required attributes via CLI as described in the
following ‘How to call the binary‘ section.

3. Run the binary as specified in the following section.

The binary needs to be configured via the CLI or a dedicated config file. Some examples
can be found below

Using a config file:
./psittacus --cfg config.yml

Using a config file and overrides:
./psittacus --cfg config.yml --log-level Trace --psi-column v0

Server, from CLI (with TLS params):
./psittacus --log Debug \
--server true \
--data data/datafile.csv \
--result data/result.csv \
--client -to-server true \
--variant Balanced \
--col v0 \
--address 10.0.0.128:7878 \
--trusted certificates/certificate.pem \
--key certificates/key.pem \
--certificate certificates/chain.pem \
--auth false

Client, from CLI (with TLS params, no client authentication):
./psittacus --server false \
--data data/micro.csv \
--client -to-server true \
--result data/result.csv \
--trusted certificates/certificate.pem \
-b 512 \
-a 127.0.0.1:7878

Page 11 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

Client, from CLI (no TLS, minimal):
./psittacus --server false \
--data data/micro.csv \
--result data/result.csv \
-b 512 \
-a 127.0.0.1:7878

How to run the provided library

The provided library includes both configuration files, example data sets and TLS certificates to
allow executing a fully self-contained example.

Start the server:
./psittacus -linux -amd64 -0.3.2 --cfg tls_server.yml

Start the client:
./psittacus -linux -amd64 -0.3.2 --cfg tls_client.yml

Expected output On success both parties write a confirmation to the command line depending
on the value of log level.

The client also writes the received intersection into a file (as specified in the config). De-
pending on the configuration (X to X full data values in the config) either party also saves
the full intersection data in a corresponding intersection.csv file.

Page 12 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

3 PSA Library

3.1 PSA Integration Caveats
The development and internals of the PSA library were desired in previous deliverables, see
Section 1.2 for details. Here, we want to summarize the experience gathered in the integration
process.

Configuration Options Microsoft seal and with it node-seal are very context-heavy frame-
works. Developers can leverage homomorphic encryption (D5.1) in a variety of settings with
different security assumptions. Hence, the myriad of customization options. We can fine-tune
the seal libraries to meet exactly our needs. However, for everything to work as expected, we
need some additional synchronization effort. The Server and the Client must agree on the same
security parameters in our PSA library before beginning the protocol.

Software Architecture Due to the nature of the implemented algorithm, the library has to
run on two devices. In the risk assessment use case we presented in deliverable D5.11, both
the Server and the Client were using a browser as depicted in Figure 3. This setting’s main
advantage is the ease of access. Both parties only need to enter the website and upload their
respective data files. The obvious disadvantage is that the vector-matrix multiplication takes
place in the browser of the Server party. Depending on the machine in use, this might have a
significant performance penalty.

Figure 3: Browser to Browser PSA Architecture

In the case of the DVC by Eurecat, we use the library in a slightly different architecture.
Here, the actual web server runs the Server part of the computation as depicted in Figure 4. With
this setup, we reflect the structure we used to benchmark the library in D5.11. However, in this
scenario, other challenges arise. The PSA library was designed with ease of implementation in
mind. With both the front-end and the back-end being in JavaScript, we hoped that small node-
based applications would be easy to build. As this remains true, integrating the PSA library to
existing non-node-based back-ends proved more challenging.

In the existing architecture, the back-end consisted of a python flask server. In the current
solution, this flask server has to communicate to a separate express server dedicated to the
PSA calls of the back-end. While having a different server for different components is fine,
it raises the question of performance. In such an architecture, it might be most beneficial to

Page 13 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

re-implement the server part of the PSA library in C++ and perform those computations on a
dedicated server. Finally, we can see that computationally intense applications such as those
using homomorphic encryption need to be fine-tuned on parameter and architectural levels.

Figure 4: Browser to Node PSA Architecture

Responsiveness JavaScript and, therefore, the PSA library run single-threaded. It is essential
to know that the computations are blocking. In other words, if the server-side computation is
executed in a browser environment, the interface will freeze. This lack of responsiveness does
not indicate an error. For this reason, we added a spinning wheel to our risk analysis implemen-
tation. However, we suggest using the native C++ version on the server-side if possible.

Page 14 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

4 Secure Lead-Time-Based Pricing

4.1 Running the Demonstrator
We will quickly repeat the methods on how to run the demonstrator as a standalone application.
The code to the java command line demonstrator is publicly available at GitHub7.

4.1.1 Linux

Using the Linux platform, we need make and a java runtime environment jre. We can then call
the different pricing protocols with the following calls.

make linear
make convex
make concave
make bucket

These calls will execute 3 parties using the predefined settings in the respective demo direc-
tories. In each of those demo runs there is one vendor as server1 and two vendees as server2
and server3. They perform the pricing evaluation for three individual products with different
price offers and delivery times. The only difference between the folders linear, convex,
concave, bucket is the underlying pricing algorithm used. By reading one of the servers
accepted orders.json in one of the directories we can see which SalesPositions suc-
ceeded. The input files were selected in such a way that each algorithm accepts different prod-
ucts. The result files are provided in the repository. The runtime was between 18 and 27 minutes
depending on the protocol. These values should be taken with a grain of salt, and serve as refer-
ence points. When measuring the timing of the demo setups runs we used the following CPU:
Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz

Applying changes to the library requires a java development kit (jdk) and maven to build
the code. The following command installs all necessary dependencies on Ubuntu.

sudo apt-get update && sudo apt-get install -y \
openjdk -11-jdk \
maven \
make

The next calls build the code and move it to the correct locations in the demo sub-folders.

make install
make move

4.1.2 Docker

Platform independence is achieved by using our provided Dockerfile. Using a docker com-
mand line interface, we can run our container as follows.

docker build -t sltbp .
docker run -i sltbp

7https://github.com/Safe-DEED/SLTBP

Page 15 of 20

https://github.com/Safe-DEED/SLTBP

D5.12 - Implementation of cryptographic building blocks v3/3

The first command will create a docker container from an Ubuntu image. This container will
have the above mentioned dependencies installed. It will then copy the current directory (i.e.,
the root of SLTBP) to the container and run make install and make move. This will assure,
that any prior changes are reflected in the demo directories of the docker container.

The second instruction will run an interactive bash in the SLTBP directory of the docker
container. There we can run the demo setups with the above mentioned make targets.

4.2 Integration of the Code
Integration with Maven The integration procedure of SLTBP depends on the starting point.
The easiest approach would be using java and maven. In this scenario we only need to run mvn
clean install in the root directory. This will install SLTBP in our local maven repository.
Then, we include SLTBP as a dependency in our pom.xml as follows:

<dependencies >
<dependency >

<groupId >iaik </groupId >
<artifactId >root -mpc </artifactId >
<version >1.0-SNAPSHOT </version >

</dependency >
...

</dependencies >

We can then call the static function secureLeadTimeBasedPriceFinder() to start the SLTBP.
This is equivalent to executing the demo.jar file in the current directory.

Running SLTBP as a seperate process The above mentioned approach, however, is not com-
patible with different platforms or build tools. We therefore decided to rely on JSON files as
inputs and interfaces to our program. In this way we can set up all the parameters with the input
files and execute the SLTBP demonstrator as a standalone java application. We will name and
describe the 3 input files and the output file of the demonstrator.

• ATPUnits.json This file contains the input to the MPC protocol as described in previous
deliverables. A single ATPUnit mus contain of a Date, Price, Amount and Sales Position.
The last must be unique in the list and shared with all other participants. An overview is
given in table 3

• NetworkConfig.json Here we have to provide information on the entire network of
participants. One party is described with an ID, IP, Port and a boolean signaling if the
object describes oneself. Again summarized in table 4

• MPCSettings.json With this deliverable, we decided to add this configuration file. In
D5.11 we stated in chapter 3.2.2 how the most important MPC settings could be altered.
As this process required recompiling the project, we now provide file based settings. The
updated configuration options are listed in table 5.

• accepted order.json This file is used as an output for the protocol. The client stores
its succeeded deals, the server stores all succeeded deals. In case all Sales Positions fail,

Page 16 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

the key-value pair deal:failed is stored. The structure of the JSON objects is the same
as in ATPUnits.json. The only difference is that the price is given as the aggregated price
of this order.

Type Name Description
String date Setting ordered lead time for client and standard lead

time for server
String amount Setting amount of units ordered and total, for client

and server respectively
String price Setting the offered price for a single unit
String Sales Position Unique identifier connecting the unit to a real product

Table 3: A single ATPUnit

Type Name Description
String id Server has to have id=1. The remaining ids are ascending
String ip IP address of the player with that id
String port The port of the player with that id
Boolean myID A boolean value indicating whether this object describes myself

Table 4: A Network Configuration Object

Type Name Description
String evaluationProtocol Defines the pricing protocol to run, if bench-

mark is disabled
String preprocessing Defines source of multiplication triples. Must

be set to MASCOT for secure computations
String otProtocol Must be set to Naor, to enable the secure Naor

Pinkas OT protocol
String evaluationStrategy Defines evaluation strategy for native protocol

blocks inside FRESCO
String maxBitLength Defines the maximum bit length of secret

shared values
String modBitLength Defines the bit length of the modulus
Boolean benchmarking Runs all pricing protocols after one another and

tracks their time and network usage
Boolean debug Runs all pricing protocols in plain to check re-

sults

Table 5: Contents of MPCSettings.json

With the GUI provided by Infineon we can visualize the steps in the process mentioned above.
First, each party enters their input as shown in Figure 5. Then, the parties wait while the MPC

Page 17 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

computation is performed (Figure 6). Finally, the parties receive the result as described above
and shown in Figure 7.

Figure 5: Interface to create ATPUnits.json

Figure 6: Interface view during MPC computation

Page 18 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

Figure 7: Interface showing result of accepted orders.json

4.3 Recent Changes
For the final deliverable, we mainly focused on support for the integration of our demonstrator.
However, we found inconveniences, bugs, and unnecessarily complex constructions during the
process, which we then refactored. In the following section, we want to overview the changes
to the code that happened since the previous deliverable D5.11.

Silent participant As a measure of convenience, we added the option of a silent participant.
Our use case partner specifically requested that not all participants should have to order all listed
sales positions. This change will only trigger our aggregation protocol once there is an overlap
in the requests of customers. Each participant still needs to have a JSON object for each sales
position. However, if the party wants to abstain from ordering, they need to set the date of those
sales positions to zero. They will then participate in the MPC computation for that unit, yet they
will not provide any input.

Opening bug We noticed that some of our protocols would not correctly open the final result
of the computation. This problem led to the creation of a common OpenProtocol. This protocol
opens the ATPUnits with the final prices and prepares a data structure to create the JSON output
file.

Refactoring With the last deliverable, we have already changed from two different applica-
tions to a single one. In the beginning, we started with a client and a server package. We moved
the computation to the Application package and made the user selection dependant on the input
files. We made the necessary cleanup with this deliverable by moving needed helper functions to
either the Util or the Application package and deleted the Client and the Host package entirely.
This refactoring also streamlined the structure of our pom.xml files.

Page 19 of 20

D5.12 - Implementation of cryptographic building blocks v3/3

5 Conclusion
The technical solutions presented here will directly contribute to the adoption of the two main
principles of the GDPR. It will enable data sharing while protecting individuals’ privacy. Thus,
it will help position European enterprises as market leaders in responsible data-driven busi-
nesses.

We now summarize three high-level conclusions we draw from developing and integrating
these three privacy-preserving software libraries.

• Privacy-preserving protocols should be more heavily encouraged or even demanded by
regulators, e.g., through Article 25 (Privacy by Design) GDPR or the GDPR codes of
conduct requiring privacy-preserving algorithms in specific settings.

• The community should not only focus on efficiency but also on developing more business-
friendly privacy-preserving solutions, i.e., one with a high technology readiness level and
simple integration into existing systems.

• The integration of privacy-preserving software libraries still needs privacy engineers ex-
perts.

6 References

[1] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In SCN,
volume 6280 of Lecture Notes in Computer Science, pages 418–435. Springer, 2010.

[2] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Christian
Weinert. Mobile private contact discovery at scale. In USENIX Security Symposium, pages
1447–1464. USENIX Association, 2019.

Page 20 of 20

	Introduction
	Private Set Intersection (PSI)
	Private Selective Aggregation (PSA)
	Secure Lead-Time Based Pricing (SLTBP)

	PSI Library
	Technical Overview of the PSI Library
	Performance Evaluation
	Running the Library

	PSA Library
	PSA Integration Caveats

	Secure Lead-Time-Based Pricing
	Running the Demonstrator
	Linux
	Docker

	Integration of the Code
	Recent Changes

	Conclusion
	References

