
Grant Agreement Number: 825225

Safe-DEED

www.safe-deed.eu

Low complexity primitives v2/2

Deliverable number D5.7

Dissemination level Public

Delivery data due 30.11.2020

Status Final

Authors Lukas Helminger

This project has received funding from the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 825225.

D5.7 - Low complexity primitives v2/2

Changes Summary

Date Author Summary Version
30.10.2020 Lukas Helminger First Draft (for internal re-

view)
0.1

16.11.2020 Ludovico Boratto Internal Review 0.2
17.11.2020 Alexandros Bam-

poulidis
Internal Review 0.3

21.11.2020 Lukas Helminger Final Version (incorporated
reviews)

1.0

Page 1 of 31

D5.7 - Low complexity primitives v2/2

Executive Summary
This deliverable D5.7 - Low complexity primitives v2 - is an update of D5.2. It is together with
D5.8, the final outcome of task T5.1. This task was concerned with developing and improving
WP5’s core technologies with respect to both practical and theoretical aspects.

The research efforts conducted within this deliverable scope led to one additional scientific
article accepted at Asiacrypt 2020. In addition, parts of this deliverable will be extended to a
scientific article in the near future.

The two main results have direct as well as indirect consequences for Safe-DEED’s privacy-
preserving technology. The work on hybrid homomorphic encryption schemes can reduce the
bandwidth requirement in all scenarios where homomorphic encryption is applied. In particular,
it can be used in WP4’s Data Valuation Component to minimize the cloud service’s commu-
nication complexity. Besides, the security analysis on MIMC, a privacy-friendly encryption
scheme, broadens the knowledge in this direction.

Page 2 of 31

D5.7 - Low complexity primitives v2/2

Table of Contents
1 Introduction 5

1.1 Data Valuation Component . 5
1.2 Homomorphic Encryption . 5
1.3 Hybrid Homomorphic Encryption . 6
1.4 Benchmark Platform . 6
1.5 Road-map . 7

2 Research on Low Complexity Symmetric Key Primitives 7

3 Hybrid Homomorphic Encryption: Guideline 8
3.1 Motivation and Contribution . 8
3.2 Review: Formal Definitions . 9

3.2.1 Preliminaries and Notation . 9
3.2.2 Literature . 9
3.2.3 Conclusion . 12

3.3 Formal Definition . 13
3.3.1 Preliminaries . 14
3.3.2 Hybrid Homomorphic Encryption . 15
3.3.3 Relation between HHE and KEM-DEM paradigm 16
3.3.4 Security . 18

3.4 Review: Benchmarks . 18
3.4.1 Metrics . 18
3.4.2 Ciphers . 19
3.4.3 Homomorphic Encryption Libraries 19
3.4.4 Packing . 20
3.4.5 Security Parameters . 20
3.4.6 Discussion . 20

3.5 Benchmarks . 21
3.5.1 Cipher Parameters and Modes of Operation 21
3.5.2 FHE Libraries . 22
3.5.3 Benchmark Platform . 23
3.5.4 Benchmarked Applications . 23
3.5.5 SEAL Benchmarks . 23
3.5.6 TFHE Benchmarks . 24
3.5.7 Throughput . 24
3.5.8 Discussion . 24

4 Conclusion 26

5 References 26

A MiMC Attack 30

Page 3 of 31

D5.7 - Low complexity primitives v2/2

List of Figures
Fig.1 Homomorphic Encryption . 6
Fig.2 Hybrid Homomorphic Encryption . 7

Abbreviations

AES Advanced Encryption Standard
DEM Data-Encapsulation Mechanism
HE Homomorphic Encryption
HHE Hybrid Homomorphic Encryption
IND-CPA Indistinguishability under Chosen Plaintext Attack
KEM Key-Encapsulation Mechanism
MPC Multi-Party Computation
PET Privacy-Enhancing Technology
PIR Private Information Retrieval
PRG Pseudorandom Generator
RLWE Ring-Learning with Errors
ZKP Zero-Knowledge Proof

Page 4 of 31

D5.7 - Low complexity primitives v2/2

1 Introduction
This deliverable is the second within Safe-DEED that focuses on the improvement of low com-
plexity primitives for privacy-preserving protocols. The first version - D5.2 - reported on a new
symmetric encryption scheme for multi-party computation (see D5.1) partly developed in Safe-
DEED. We will give an update on the research in this direction. However, the main focus of this
version is on minimizing the communication complexity for homomorphic encryption schemes,
which is another promising technology for realizing privacy-preserving protocols. This focus
is motivated by privacy-preserving data analytics (WP4 and WP5 collaboration), but naturally
generalized to many use-cases outside of the project.

Cloud services give individuals as well as businesses easy and cheap access to powerful
tools. The demand for cloud services dramatically increased during the pandemic, especially
when looking at teleconferencing (such as Zoom, GoToMeeting, and WebEx) and tools for
enabling collaborative working (such as Google Apps, and Dropbox). Within Safe-DEED, we
also develop a tool that can be seen as a cloud service.

1.1 Data Valuation Component
The data valuation component (DVC) is a convenient way to assess a company’s data value. It
consists of two subcomponents. First, a company has to answer several questions about their
data. In a second step, the company has to upload (a sample of) the actual data. In the end, the
DVC returns a score corresponding to the data’s value. Clearly, many companies are looking
for a service that can tell them how much their data are worth (for details see in Safe-DEED’s
deliverable D4.2 ”Baseline prototypes for data valuation”).

However, there is a general rise of concern when using cloud services over the loss of
individual privacy and business values. Therefore, resulting in skepticism, which is a barrier to
the adoption of cloud services. This issue also affects our DVC.

1.2 Homomorphic Encryption
In order to assuage these privacy concerns, we apply state-of-the-art privacy-preserving crypto-
graphic primitives in Safe-DEED. More concretely, the companies’ data, including the question-
naire’s answers, can be protected by homomorphic encryption (HE). Homomorphic encryption
enables for the first time to compute on encrypted data without decrypting illustrated in Fig-
ure 1. For technical details, please see Safe-DEED’s deliverable D5.1 ”Requirements for secure
computation on large datasets with multiple owners”. Theoretically, homomorphic encryption
solves our issue because the DVC only sees encrypted data, but can still provide the data’s
valuation. Unfortunately, homomorphic encryption has some performance issues.

All known HE encryption schemes suffer from a very large expansion factor (the ratio be-
tween the ciphertext and plaintext length). Usually, HE schemes have at least a thousand-fold
expansion, i.e., for sending only one HE encrypted image, the upload is around 1GB in size.
Therefore, the transmission of the ciphertext between client and server is often prohibitive in
terms of bandwidth.

Page 5 of 31

D5.7 - Low complexity primitives v2/2

Figure 1: Homomorphic Encryption

Alice locks her diamond (her data) into a box. She ”encrypts” it. Charlie can work on
the diamond (analyze the data) through the opening. He cannot steal (decrypt) it because
only Alice has the key to unlock (decrypt) the box.

1.3 Hybrid Homomorphic Encryption
In order to minimize the communication complexity of HE schemes, Naehrig et al. [35] intro-
duced the paradigm of hybrid homomorphic encryption (HHE). The idea is to use a (classical)
symmetric encryption scheme (expansion factor nearly optimal) in combination with an HE
scheme depicted in Figure 2. In particular, the data will be encrypted by a symmetric encryp-
tion scheme, and an HE scheme will encrypt only the symmetric key. Then, in addition to the
application-specific computation, the server has to homomorphically evaluate the decryption of
the data (with the HE encrypted symmetric key). This results in a homomorphic encryption of
the original data. HHE has an expansion factor that is close to optimal, and so achieves its goal.

This approach’s downside is that the computation on the server-side becomes more costly
than without a symmetric encryption scheme. Namely, before any application-specific com-
putation can be done, the server has to decrypt the data homomorphically. Hence, the cost
of a homomorphic evaluation of a symmetric cipher is crucial for an HHE scheme’s success.
Several symmetric ciphers have been proposed so far, reaching from optimized Advanced En-
cryption Standard (AES) variants, through lightweight block ciphers to lattice-based encryption
schemes. All of them provide implementations and corresponding benchmarks.

1.4 Benchmark Platform
However, as we will show in Section 3.4, none of these benchmarks are comparable, so it is
impossible to tell which symmetric cipher is the best one. The lack of comparability is owed
to various factors. First, the cipher designs were evaluated together with different HE libraries.
Even if they used the same HE library, they often instantiated it with different security param-

Page 6 of 31

D5.7 - Low complexity primitives v2/2

Time
Client Server

Homom.
evaluate

symmetric
decryption

of data

Application

Homomorphic encryption of symmetric key

Data encrypted under symmetric key

Homomorphic encryption of result

Figure 2: Hybrid Homomorphic Encryption

eters or relied on special packing methods. In addition, every benchmark was concluded on
different infrastructure. Therefore, we do not have a clear understanding of the best symmetric
candidate for HHE.

In this deliverable, we present the first benchmark platform for symmetric cipher candi-
dates. We emphasize that beyond the task of comparing different ciphers, we revisit the HHE
paradigm in order to come up with a unified formal definition.

Target Audience. This deliverable is targeted primarily towards researchers working in the
realm of privacy-preserving data analytics. It is of particular interest to researchers working
with large data sets. Further, this deliverable’s outcome is relevant for software engineers be-
cause it gives the first comprehensive guide for choosing the appropriate symmetric cipher for
homomorphic encryption.

1.5 Road-map
In Section 2, we give a high-level summary of a research article (co-written within Safe-DEED)
in the direction of low complexity primitives security analysis. We defer to Appendix A for the
article’s abstract. This deliverable’s main objective can be found in Section 3. We review the
literature of HHE, both regarding formal definitions (Section 3.2) as well as practical solutions
(Section 3.4). In Section 3.3 and Section 3.5, we give our own definition of HHE respectively
present a new benchmark platform including results for HHE.

2 Research on Low Complexity Symmetric Key Primitives
To improve the performance of Privacy Enhancing Technologies (PETs) like Homomorphic En-
cryption, Multi-Party Computation (MPC), and Zero-Knowledge Proofs (ZKPs), one can often
apply (symmetric) ciphers. For example, this deliverable extensively describes how ciphers re-

Page 7 of 31

D5.7 - Low complexity primitives v2/2

duce communication complexity for homomorphic encryption schemes [32, 9, 17, 3]. Similar
effects can be seen for MPC [3, 26, 2, 27, 1] and ZKPs [2, 4, 25].

In the last years, there was a considerable effort to design ciphers dedicated to the above
PETs. This effort lead to significantly better performance for these PETs. However, due to their
recent nature, the amount of security analysis done so far cannot be compared to AES. Hence,
it is of great importance to further study the security of these dedicated ciphers.

Safe-DEED was involved in a research article [20] showing new attacks on cipher designs
often used for PETs. In particular, the article focused on the cipher MiMC [2, 27]. MiMC is
often used as a baseline for more recent algorithms exploring this design space (e.g., see D5.2).
We have included the abstract of the article in Appendix A.

A similar design, GMiMC [1] (co-developed in Safe-DEED), is not directly affected by
the attack. Nevertheless, the observation of the research article enhances our understanding of
GMiMC as well. We will benefit from this new knowledge in two ways. First, it contributes to
the confidence in the existing GMiMC design. In addition, it will be incorporated into a new
version of GMiMC.

3 Hybrid Homomorphic Encryption: Guideline
This section is a summary of our research into the topic of hybrid homomorphic encryption
done so far. Based on this material and further analysis, we plan to publish a research article
online based on this material. In addition, we are aiming to submit this article to a conference
or a journal.

3.1 Motivation and Contribution
Most of the literature about the practicality of HE schemes focuses on the computational over-
head. However, the first practical issue is already before the actual computation. The question
is, how do we send a homomorphic ciphertext from the client to the server in an efficient way
because all known HE encryption schemes suffer from a significant expansion factor. The ex-
pansion factor is the ratio between the ciphertext and plaintext length. Consequently, we want it
to be as close to one as possible. Usually, HE schemes have around a thousand-fold expansion.
In other words, if one wants to send 1MB in raw data, we expect the homomorphic ciphertext’s
size to be around 1GB in size. Therefore, the transmission of the ciphertext between client and
server is often prohibitive in terms of bandwidth.

Our goal is to apply our expertise for low complexity primitives for MPC protocols to HE
protocols. As a first step, we review existing literature and formalize the definition of hybrid
homomorphic encryption. Then, we do a careful analysis of all the benchmarks done so far.
The analysis’ conclusion is that the benchmarks’ setups differ widely and cannot be compared.
Therefore, we designed and implemented the first benchmark platform for hybrid homomor-
phic encryption and already tested several candidates. This resulted in new insights about the
performance of the different low complexity primitives. In the future, we plan to test even
more candidates and open our platform to the public so that everyone can benchmark their low
complexity primitives.

Page 8 of 31

D5.7 - Low complexity primitives v2/2

3.2 Review: Formal Definitions

3.2.1 Preliminaries and Notation

The computational security parameter for all encryption schemes will be denoted by κ. Further,
if we write SYM for a symmetric encryption scheme, we implicitly mean SYM= (SYM.KGen,
SYM.Enc,SYM.Dec). In analogy, we write short HE for a homomorphic encryption scheme
meaning HE= (HE.KGen, HE.Enc,HE.Dec,HE.Eval).

We will start - in Section 3.2.2 - by reviewing the previous work done in the light of defining
HHE. Our approach is to describe the literature that formally treated HHE chronically. Note
none of the papers focused on defining HHE. Instead, most of the time, it was a by-product,
either of some bigger applications or benchmarks concerning symmetric ciphers. Therefore,
we also explain the main contribution - in our opinion - of the following papers. We do this in
order to help the reader to understand the specific approach of each paper better. Afterward, in
Section 3.2.3, we work out the differences as well as the similarities in the several approaches
to define HHE. This discussion will naturally lead us to a new formal definition. This new
definition - in Section 3.3 - aims at being more general than the ones so far.

3.2.2 Literature

The first time that the idea of HHE was mentioned is in the work of Lauter et al. [35] when
talking about optimizing the communication with the cloud. The main idea of this paper is to
discuss the practicals of homomorphic encryption. Therefore, they look at real-world appli-
cations from different sectors and show a proof-of-concept implementation of an HE scheme
based on Ring-Learning with Errors (RLWE) [30]. Since RLWE construction suffers from very
large ciphertexts, Lauter et al. proposed HHE as mitigation. Their main observation is that all
the steps for the decryption of a symmetric cipher can be performed on HE-encrypted entries.
More concretely, in addition to the message encrypted with AES, the client sends the HE en-
cryption of this secret AES key to the cloud. The cloud then homomorphically decrypts the
AES ciphertext. Thereby it gets a homomorphic ciphertext of the original message. Their de-
scription covered all essentials of HHE, but the authors do not make an attempt to formalize or
generalize their idea.

In 2014, Brakerski and Vaikuntanathan [8] generalized a construction for efficient Private
Information Retrieval (PIR) [15] used in an earlier version of the paper [7]. This can be seen as
the first attempt to formalize what they dubbed HHE. We have depicted Brakerski and Vaikun-
tanathan construction in Scheme 1. The main idea follows Lauter et al.’s practical description.

We now want to analyze some of their algorithms in a more detailed way. First, it has a flaw
from a technical viewpoint because the encryption algorithm uses the secret symmetric key
sksym. However, the key is not an input parameter of the algorithm and, therefore, can not be
used. Adding the secret symmetric key as a parameter to the encryption algorithm would turn
the construction into a private-key HE scheme. Secondly, they mention that their decryption
algorithm can only handle evaluated ciphertext. Therefore, before we do the decryption, we
have to check whether the ciphertext is still symmetric. If this is the case, they suggest to
evaluate the ciphertext on the identity function first and then to decrypt the message. Third,
note that the decryption circuit is built into the evaluation algorithm. Therefore it can only be
called on symmetric ciphertexts. This is effectively limiting the number of evaluations to one.

Page 9 of 31

D5.7 - Low complexity primitives v2/2

On the theoretical side, Brakerski and Vaikuntanathan were already able to prove two natural
and important statements. At first, they showed that the cryptographic construction in Scheme 1
is indeed again an HE scheme. In particular, if both the underlying private-key encryption
scheme as well as the HE scheme is semantically secure, then they proved that their new HE
scheme is also semantically secure. In other words, it inherits the property. To sum up, the first
formal description of HHE is already quite evolved but has some technical issues.

Let HE be an homomorphic encryption scheme and SYM be a private-key encryption scheme
with message space M , and m ∈M . Then the hybrid encryption scheme HHE is defined as
follows:

HHE.KGen(1κ)

sksym←$SYM.KGen(1κ)

(pk,evk,sk)←$HE.KGen(1κ)

csym←$HE.Encpk(sksym)

return (pk,(evk,csym),sk)

HHE.Enc(pk,m)

c←$SYM.Encsksym
(m)

return c

HHE.Eval(f ,evk,(c1, . . . ,ct))

c∗←$HE.Evalevk(SYM.Deccsym(c1), . . . ,SYM.Deccsym(ct))

return c∗

HHE.Dec(sk,c)

if c is symmetric then
c←$HE.Eval(id,evk,c)

fi
m∗←$HE.Decsk(c)

return m∗

Scheme 1: Hybrid Homomorphic Encryption [8]

Shortly thereafter, Gentry et al. came up with their own HHE construction. They refer
to it at some point as homomorphic hybrid encryption and apply it to non-interactive zero-
knowledge proofs. Further, they propose it as a way to minimize communication in general
secure computation. Looking at their construction - Scheme 2 - we can immediately notice
the use of a pseudorandom generator (PRG). Since a PRG is an idealization of a stream cipher,
Scheme 2 is applicable only for a subset of all symmetric ciphers. A further limitation is that the
decryption circuit is built into the evaluation algorithm. We have already seen the implications
of this. Gentry et al. [8] showed a similar result about propagating the semantic security from
the underlying HE scheme to the hybrid construction.

The work from Canteaut et al. [9] was probably the first one solely dedicated to the prob-
lem of transmitting a homomorphic ciphertext to an evaluator. The contribution to the formal
understanding of HHE (compressed encryption in their words) is a generic design for efficient
compression. So their approach - illustrated in Scheme 3 - is rather practical. As one can, for
example, see due to the fact that within their definition, they specifically work with additive
stream ciphers. In contrast to the last two approaches, the homomorphic decryption of sym-
metric ciphertexts is done in a separate algorithm - not built into the evaluation. This has the
huge benefit of being able to use the evaluate algorithm as many times as we want. The issue
was solved by implicitly assuming that the HE scheme is able to add plain constants without

Page 10 of 31

D5.7 - Low complexity primitives v2/2

Let HE be a fully homomorphic bit-encryption scheme, G a pseudorandom generator, and m ∈
{0,1}∗. Then they construct a fully homomorphic hybrid encryption scheme in the following
way:

HHE.KGen(1κ)

(sk,pk)←$HE.KGen(1κ)

return (sk,pk)

HHE.Enc(pk,m)

s←${0,1}κ

u = m⊕G(s, |m|)
s̄← HE.Encpk(s)

return c = (s̄,u)

HHE.Eval(C,pk,c1, . . . ,cn)

Parse ci = (s̄i,ui)

Cu← f (1κ,C,u1, . . . ,un)

return v← HE.Evalpk(Cu, s̄1, . . . , s̄n)

where f (1κ,C,u1, . . . ,un) returns a circuit

Cu s.t. for all s1, . . . ,sn ∈ {0,1}κ

Cu(s1, . . . ,sn) =C(u1⊕G(s1, |u1|), . . . ,un⊕G(sn, |un|))

HHE.Dec(sk,v)

return HE.Dec(v)

Scheme 2: Hybrid Homomorphic Encryption [23]

encrypting them first. They did not specify any algorithms for the homomorphic evaluation or
the decryption. Nevertheless, it can be safely assumed that it is fine to take both algorithms
from the underlying HE scheme.

It is worthwhile to note that for performance reasons, they suggest distinguishing between
three phases of HHE.

1. An offline key-setup phase which only depends on the public key and has to be performed
only once.

2. An offline decompression phase which can be performed only based on some plaintext-
independent material found in the compressed ciphertext.

3. An online decompression phase which aggregates the result of the offline phase with
the plaintext-dependent part of the compressed ciphertext and recovers the decompressed
ciphertext.

They shortly discuss that compressed homomorphic encryption is just hybrid encryption and
relates to the generic Key-Encapsulation Mechanism/Data-Encapsulation Mechanism (KEM-
DEM) framework. Therefore they claim Indistinguishability under Chosen Plaintext Attack
(IND-CPA) of their generic construction as long as the HE is a semantic KEM and any general-
purpose IND-CPA secure DEM. We see a similar argumentation in [31]. However, they mention
that the notions of security of this framework - with respect to HE - have not been particularly
investigated.

Page 11 of 31

D5.7 - Low complexity primitives v2/2

Let HE be a homomorphic encryption scheme with plaintext space {0,1}∗ and m ∈ {0,1}∗, an
expansion function G and F a fixed-size parametrized function F with input size lx, parameter
size lk with output size N.

HHE.KGen(1κ)

Transmit IV to both parties

(sk,pk)←$HE.KGen(1κ)

return (sk,pk)

HHE.Enc(pk,m)

t← d|m|/Ne
(x1, . . . ,xt)← G(IV, tlx)

k←${0,1}lk

zi← Fk(xi) for 1≤ i≤ t

kstream← |m| leftmost bits of z1|| · · · ||zt

return c′← (HE.Encpk(k),m⊕ kstream)

HHE.Eval(C,pk,c1, . . . ,cn)

returnHE.Evalpk(C,c1,. . .,cn)

HHE.Dec(sk,c)

t← d|m|/Ne
(x1, . . . ,xt)← G(IV, tlx)

HE.Encpk(zi)← CF(HE.Encpk(k),xi) for 1≤ i≤ t

HE.Encpk(kstream)← HE.Encpk(z1), . . . ,HE.Encpk(zt)

return c← C⊕(HE.Encpk(kstream),m⊕ kstream)

Scheme 3: Compressed Homomorphic Encryption [9]

In terms of formalizing HHE [33] (and also the thesis [31]) are able to extend improve on
the work of Canteaut et al. Most important, their framework to reduce the data complexity uses
a generic symmetric cipher. By also dividing their construction Scheme 4 into different phases,
they are able to show that the approach of Canteaut et al. is also applicable to generic symmetric
ciphers. They even go a step further and include the evaluation and sending back - which is
done after a ciphertext reduction - into their phases. Note that they state that the decompression
algorithm gets way easier if the evaluation algorithm can handle symmetric ciphertexts.

For completeness, we depicted the formal definition of [22] in Scheme 5. The aim of this
paper is to minimize the cost of the decryption algorithm’s homomorphic evaluation of lattice-
based symmetric encryption schemes.

3.2.3 Conclusion

In this section, we want to discuss the significant differences in the above approaches to defining
HHE formally. Also, we want to give reasons which options are preferable to our viewpoint.

Maybe the most substantial difference is how homomorphic decryption of the symmetric
ciphertexts is performed. We can see two methods to do homomorphic decryption

• built into the evaluation algorithm of the HHE [8, 23].

• a separate algorithm [33, 9, 22]

We prefer the latter approach for two reasons. First, it seems more general and also more intu-
itive to separate the evaluation algorithm and the algorithm for homomorphic decryption. The

Page 12 of 31

D5.7 - Low complexity primitives v2/2

Let SYM be a symmetric scheme and HE a homomorphic scheme (no specific requirements)

HHE.KGen(1κ)

(sk,pk)← HE.KGen(κ)

k← SYM.KGen(κ)

cH ← HE.Encpk(k)

return (sk,pk,k,cH)

HHE.Enc(pk,m)

cS← SYM.Enck(m)

return cS

HHE.Dec(sk,c)

return HE.Dec(sk,c)

HHE.Eval(C,pk,c1, . . . ,cn)

return HE.Eval(C,pk,c1, . . . ,cn)

HHE.Decomp(cH ,cS,pk)

return HE.Evalpk(CSYM.DeccH ,HE.Encpk(c
S))

HHE.Red(cH)

return HE.Comp(cH)

Scheme 4: Hybrid Homomorphic Encryption Framework [33]

second reason is motivated by a real-world example. Think of a client sending homomorphi-
cally encrypted data to the server together with a function to evaluate. So far, both methods
would work. What if, at some later point in time, the client asks the server to perform additional
computations on the same data (without sending the encrypted data again). Then, this is only
possible if the server is still able to perform computations on the encrypted data, which does
not work if the decryption circuit is built into the evaluation algorithm. For the above reasons,
we will opt for the second method and call the separated algorithm Decompression and write
Decomp. A point that was not seriously discussed in any of the above work is the underly-
ing homomorphic encryption scheme’s plaintext space. We could find the following plaintext
spaces:

• Z2 [9, 23, 8], and

• no restriction: [22, 33].

Obviously a general definition of HHE should not restrict the plaintext space of the underlying
HE scheme. For example, this would already exclude on of the most popular HE libraries SEAL.
At last, we want to pick up the idea of reducing the homomorphic ciphertexts before sending
it back as it is mentioned in [35, 33]. While this is perfectly fine and can be an advantage - in
terms of data complexity - we think this should not be a part of an HHE definition. Due to the
fact that such a reduction only depends on the properties of the underlying HE scheme.

3.3 Formal Definition
This section aims to come up with a generally valid definition of HHE. The definition will
be highly influenced by the literature and based on the conclusion drawn from the different
approaches. Before defining HHE, we want to formally define its two components, private-key

Page 13 of 31

D5.7 - Low complexity primitives v2/2

Let HE be a fully homomorphic encryption scheme and SYM be a private-key encryption
scheme and m a message. Then the hybrid encryption scheme HHE is defined as follows:

HHE.KGen(1κ)

(pk,evk,sk)←$HE.KGen(1κ)

return (pk,evk,sk)

HHE.Enc(pk,m)

k← SYM.KGen(1κ)

c1←$HE.Encpk(k)

c2←$SYM.Enck(m)

return (c1,c2)

HHE.Dec(sk,c)

return HE.Dec(sk,c)

HHE.Eval(f ,evk,c)

c∗← HE.Evalevk(f ,c)

return c∗

HHE.Decomp(evk,c1,c2)

x← HE.Encpk(c2)

c∗← HE.Evalevk(SYM.Decc1 ,x)

return c∗

Scheme 5: Hybrid Homomorphic Encryption [22]

encryption and HE in Section 3.3.1. After the definition of HHE (Section 3.3.2), we will take a
closer look at the relation between HHE and the KEM-DEM mechanism (Section 3.3.3). This
discussion will enable us to understand HHE constructions’ security, depending on the security
of its two components (Section 3.3.4).

3.3.1 Preliminaries

As we have seen in Section 3.2, there were different ways of modeling the symmetric as well as
the homomorphic part of HHE. In order to not exclude certain constructions, we are aiming to
formulate the building blocks as general as possible. We start with what is commonly referred
to as symmetric encryption.

Definition 3.1 (Private-Key Encryption, [28]). A private-key encryption scheme is a triple of
probabilistic polynomial-time algorithms (KGen,Enc,Dec) such that:

1. The algorithm KGen takes as input 1κ and outputs a key k.

2. The algorithm Enc takes as input a key k and a plaintext message m∈ {0,1}∗, and outputs
a ciphertext c.

3. The algorithm Dec takes as input a key k and a ciphertext c and outputs a message m or
an error ⊥.

After this well-established definition in cryptography, we are going to define HE. Due to the
relative novelty of HE, there is no well-established book that defines HE. Therefore, we choose
to follow the definition of [8]. The only adaption we make is to change the plaintext spaces
from Z2 to arbitrary messages.

Definition 3.2 (Public-Key Homomorphic Encryption). A homomorphic public key encryption
scheme is a quadruple of probabilistic polynomial-time algorithms algorithms (KGen,Enc,Dec,Eval)
that satisfy the following

Page 14 of 31

D5.7 - Low complexity primitives v2/2

1. The algorithm KGen takes as input the security parameter 1κ and outputs a triple of keys
(pk,sk,evk), called the public key, the secret key and the evaluation key.

2. The algorithm Enc takes as input a public key pk and a message m from some underlying
plaintext space. It outputs a ciphertext c.

3. The algorithm Dec takes as input a secret key sk and a ciphertext c, and outputs a message
m or a symbol ⊥ denoting failure.

4. The algorithm Eval takes as input a evaluation key evk, a l-ary function f , and a set of
ciphertexts c1, . . . ,cl and outputs a ciphertext c f .

The first thing to consider after defining a new cryptographic primitive is correctness. In
the case of homomorphic encryption, correctness is, in a way, incorporated into the ability to
perform homomorphic computations.

Definition 3.3 (Correctness). Let m ∈ M be an arbitrary message and let f : M → M be
any function. A public-key homomorphic encryption scheme HE is correct if the following
probability is negligible:

Pr
[
HE.Decsk(HE.Evalevk(f ,c)) 6= f (m)

]
, where HE.Encpk(m) = c. (1)

3.3.2 Hybrid Homomorphic Encryption

We are now ready to give our definition of HHE.

Definition 3.4 (Public-Key Hybrid Homomorphic Encryption (HHE)). Let HE be a public-key
homomorphic encryption scheme and SYM a private-key encryption scheme. Further, let M
be the plaintext message space, m ∈M , and κ the security parameter. Construct a public-key
homomorphic encryption scheme

HHE= (HHE.KGen,HHE.Enc,HHE.Dec,HHE.Eval)

as follows:

HHE.KGen(1κ)

(sk,evk,pk)← HE.KGen(1κ)

return (sk,evk,pk)

HHE.Enc(1κ,pk,m)

k← SYM.KGen(1κ)

k̂← HE.Encpk(k)

c← SYM.Enck(m)

return (k̂,c)

HHE.Dec(sk,c)

return HE.Dec(sk,c)

HHE.Eval(f ,evk,c1, . . . ,cn)

return HE.Eval(f ,evk,c1, . . . ,cn)

HHE.Decomp(c, k̂,evk)

ĉ← HE.Evalevk(SYM.Dec, k̂,c)

return ĉ

Scheme 6: Hybrid Homomorphic Encryption

Page 15 of 31

D5.7 - Low complexity primitives v2/2

We call HHE a public-key hybrid homomorphic encryption scheme. HHE is correct if it is cor-
rect in the sense of homomorphic encryption (see Definition 3.3). Note that the relation between
ciphertext and message in Equation (1) changes to ĉ = HHE.Decompevk(HHE.Encpk(m)).

Lemma 3.1. Let HE be a correct public-key homomorphic encryption scheme and SYM a cor-
rect private-key encryption scheme. Then the resulting hybrid homomorphic encryption scheme
HHE= (HHE.KGen,HHE.Enc,HHE.Dec,HHE.Eval) is as well.

Proof. Let m be an arbitrary message and let ĉ be a ciphertext such that

ĉ = HHE.Decompevk(HHE.Encpk(m)).

To show correctness, we want to bound the following probability - for any function f - by a
negligible function in the security parameter:

Pr
[
HHE.Decsk (HHE.Evalevk (f , ĉ)) 6= f (m)

]
.

By definition, we have HHE.Eval= HE.Eval. If in addition we rewrite ĉ, we get

Pr
[
HHE.Decsk

(
HE.Evalevk

(
f ,HHE.Decompevk(HHE.Encpk(m))

))
6= f (m)

]
.

Looking into the internals of the encryption algorithm and decomposition algorithm we first
get

Pr
[
HHE.Decsk

(
HE.Evalevk

(
f ,HHE.Decompevk(HE.Encpk(k),SYM.Enck(m))

))
6= f (m)

]
,

and finally arrive at

Pr
[
HHE.Decsk

(
HE.Evalevk

(
f ,HE.Evalevk(SYM.Dec,HE.Encpk(k),SYM.Enck(m))

))
6= f (m)

]
.

Now, we can bound this probability by the union bound

Pr
[
HHE.Decsk

(
HE.Evalevk

(
f ,HE.Encpk(m)

))
6= f (m)

]
+Pr [SYM.Deck (SYM.Enck(m)) 6= m] .

Both terms are negligible by assumption. The first one by the correctness of HE and the second one by
the correctness of SYM.

3.3.3 Relation between HHE and KEM-DEM paradigm

The high-level idea of HHE is related to the KEM-DEM paradigm. The KEM-DEM paradigm
traditionally aims to do as few public-key operations as possible because they are expensive.
The public-key encryption scheme is exclusively used for agreeing on a common private key.
In the homomorphic encryption setting, we have a similar objective. We want to reduce the
high communication complexity, which is due to the huge ciphertext expansion inherent to HE
schemes. Therefore, we saw that we only homomorphically encrypt the symmetric key instead
of the actual possible data.

Due to the apparent relation between HHE and the KEM-DEM paradigm, it is valid to ask
if all the KEM-DEM paradigm statements automatically apply to HHE. [9] only discussed this
aspect informally, and [31] later pointed out that there has been no particular investigation in
the security of HHE when seen in the light of the KEM-DEM paradigm. Therefore, we decided
to perform a rigorous analysis of the connection between HHE and KEM-DEM and possible
implications for HHE schemes’ security. We start by recalling the definition of the KEM-DEM
paradigm.

Page 16 of 31

D5.7 - Low complexity primitives v2/2

Definition 3.5 (KEM, [28]). A key-encapsulation mechanism (KEM) is a tuple of probabilistic
polynomial-time algorithms algorithm (KGen,Encaps,Decaps) such that:

1. Algorithm KGen takes as input the security parameter 1κ and outputs the key public-
/private-key pair (pk,sk).

2. Algorithm Encaps takes as input a public key pk and the security parameter 1κ. It outputs
a ciphertext c and a key k ∈ {0,1}l(κ), where l(κ) is the key length.

3. Algorithm Decaps takes as input a private key sk and a ciphertext c, and outputs a key k
or a special symbol ⊥ denoting failure.

It is required that with all but negligible probability over (sk,pk) output by KGen(1κ), if Encapspk(1κ)
outputs (c,k), then Decapssk(c), then Decapssk(c) outputs k.

It is easy to see that any public-key encryption scheme gives a KEM by choosing a random
key k and encrypting it. In particular, any public-key homomorphic encryption scheme gives
a KEM. A KEM is usually used together with a data encapsulation mechanism. Together they
form the KEM/DEM paradigm depicted in Scheme 7.

Let Π = (KGen,Encaps,Decaps) be a KEM with key length κ, and let Π′ = (KGen′,Enc′,Dec′)
be a private-key encryption scheme. Construct a public-key encryption scheme Πhy =
(KGenhy,Enchy,Dechy) as follows:

KGenhy(1κ)

1 : return (pk,sk)←$KGen(1κ)

Enchy(pk,m)

(c,k)←$Encapspk(1
κ)

c′←$Enc′k(m)

return (c,c′)

Dechy(sk,(c,c′))

(k)←$Decapssk(c)

m←$Dec′k(c
′)

return m

Scheme 7: KEM/DEM paradigm, [28]

A naive first attempt to get a formal relation between HHE and KEM-DEM would be to
instantiate the KEM-DEM paradigm with a public-key HE scheme. This is perfectly fine be-
cause, as we saw, every public-encryption scheme is sufficient for a KEM. We have worked out
the details of such a construction in Scheme 8.

KGenhy(1κ)

1 : (pk,evk,sk)←$HE.KGen(1κ)

2 : return (pk,evk,sk)

Enchy(pk,m)

k←${0,1}l(κ)

c←$HE.Encpk(k)

c′←$Enc′k(m)

return (c,c′)

Dechy(sk,(c,c′))

k←$HE.Decsk(c)

m←$Dec′k(c
′)

return m

Scheme 8: Homomorphic Encryption KEM-DEM mechanism

If we compare this construction to Definition 3.4, we immediately see that the encryption
algorithm is identical. In contrast, the decryption algorithm is neither identical to the decryption

Page 17 of 31

D5.7 - Low complexity primitives v2/2

Table 1: Metrics

Metric [24] [11] [34] [16] [19] [29] [3] [18] [22] [33] [9] [17] [32] [10]

Pe
rf

or
m

an
ce Latency

Throughput () () ()
Noise
Memory ()
Amortization Complexity

C
ip

he
rc

ha
r. AND Depth

#AND-Gates
#minAND-Gates
#XOR-Gates
Algebraic Degree
Key Generation
Public Key Size

algorithm nor the decompression algorithm of the HHE scheme. Worse still, the central idea of
HHE - the homomorphic decryption of symmetric ciphertexts with a public evaluation key - is
not captured by the KEM-DEM paradigm at all. Therefore, we strongly argue that HHE is not
just an application of the KEM-DEM mechanism.

3.3.4 Security

Does this mean that we have to do the security analysis of HHE from scratch? We want to
remind us why we are interested in finding a connection to the KEM-DEM paradigm. In the
end, we would like to apply the statements about security that already exist plentiful for the
KEM-DEM paradigm. Therefore, we now take a closer look at semantic security. First, recall,
a public-key HE scheme is semantically secure if it is secure as a public-key encryption scheme
[8]. Secondly, the proofs of the KEM-DEM construction’s semantic security only depend on
the encryption and encapsulation algorithm. We already saw that in those two algorithms HHE
and KEM-DEM are identical. Therefore, we can apply the KEM-DEM construction statements,
albeit our decryption deviates from the KEM-DEM paradigm. We restate the semantic security
theorem of the KEM-DEM paradigm. A proof can be found in [28].

Theorem 3.2. Let HE be a IND-CPA-secure public-key homomorphic encryption scheme and
SYM a IND-CPA-secure private-key encryption scheme. Then HHE is a IND-CPA-secure public-
key HE scheme.

3.4 Review: Benchmarks

3.4.1 Metrics

The general meaning of most of the metrics in Table 1 is clear to a researcher in cryptography.
Nevertheless, we want to specify what we understand under the given notions in the context
of hybrid homomorphic encryption. For this reason, we have grouped them into the following
categories: Performance of the algorithm Decomp, characteristics of the ciphers, performance
of the hybrid homomorphic encryption algorithm, and miscellaneous

The performance of the homomorphic decryption of a symmetric cipher (Decomp in Scheme 6)
was so far evaluated in five different metrics. Every paper that we reviewed measured the la-
tency. Latency corresponds to the runtime of the algorithm. In other words, it is the total time

Page 18 of 31

D5.7 - Low complexity primitives v2/2

that it takes to perform the decryption circuit of a given cipher homomorphically. Latency alone
can be misleading, due to the difference in the number of output bits of each cipher and the cho-
sen packing variant (see Section 3.4.4). Therefore, it is also of interest to look at the throughput
of a cipher. The throughput is defined as the amount of information per time unit that can be
achieved. Lately, [10] introduced a new metric by evaluating how many ciphertexts are needed
to achieve the optimal throughput. Only two papers so far looked explicit at the memory con-
sumption of Decomp. Sometimes it was given implicitly by reporting the specifications of the
machine, where the benchmarks were done. A further metric that was studied was the amount
of noise the homomorphic decryption produces. Put differently we are interested in how much
noise budget is still left after Decomp.

The second big category of metrics is the characteristics of symmetric ciphers. We want to
highlight that in contrast to the above metrics - which have to be obtained by doing benchmarks -
the metrics in this category can be exactly calculated. The most studied property of the ciphers
with respect to homomorphic encryption is the multiplicative depth (often called the AND-
gates depth). For better comparability between different cipher designs, [17] also calculated the
minimal number of AND gates that are needed to produce at least one output bit. In addition,
two papers looked at the total number of AND-gates and one of them also at the total number
of XOR-gates. There was one paper that looked into the algebraic degree.

Performance of the encryption algorithm - in the setting of hybrid homomorphic encryption
- was only measured by three papers. Even these papers restricted their benchmarks to the gen-
eration of the homomorphic encryption of the key for the symmetric cipher. Another unrelated
metric that can be mostly found by earlier papers is the size of the public key of the underlying
homomorphic encryption scheme.

3.4.2 Ciphers

A wide range of symmetric ciphers has been proposed to reduce ciphertext expansion in ho-
momorphic encryption. In the beginning, most papers [24, 11, 34, 16, 18] looked at AES.
They often choose a dedicated representation of the AES circuit that is best suited to be eval-
uated homomorphically. In the next phase, researchers looked at how well two lightweight
ciphers - PRINCE [19] and Simon [29] perform in homomorphic evaluations. Shortly there-
after, we could see the first ciphers dedicated to privacy-preserving computation in general or
even focused on homomorphic encryption. These new ciphers can be roughly grouped into two
categories. On the one hand, we have ciphers where the security is related to some lattice prob-
lem (R,M)-LPN-C [22], (R)-LWR-SYM [22], and recently LWE [10]. On the other hand, we
have more traditional symmetric designs as LowMC [3], FLIP [33], Trivium [9], Kreyvium [9],
Rasta [17], and FiLIP[32].

3.4.3 Homomorphic Encryption Libraries

Not only have we seen many different designs of symmetric ciphers, but they were also evalu-
ated with several different homomorphic encryption libraries. Most homomorphic encryption
libraries were not used in more than two papers as BGV [24], DGHV [11, 16], LTV [19, 18],
FV [29, 9], YASHE [29], GSW [33]. This is mainly due to the fact that until today the de-
velopment of homomorphic encryption libraries is a highly active research area. Only the
HELib was used frequently by different papers and, therefore, also different cipher designs

Page 19 of 31

D5.7 - Low complexity primitives v2/2

Table 2: Packing Techniques

[24] [11] [34] [16] [19] [29] [3] [18] [22] [33] [9] [17] [32] [10]
Packed ? ? ? ? ?
State-wise
Byte-Sliced
Bit-Sliced

[34, 3, 22, 33, 9, 17, 32]. It is noteworthy that there is one rather recent proposal that claims to
be independent of the specific homomorphic library [10].

3.4.4 Packing

Packing is another factor that has a considerable impact on the benchmarks. Especially the
throughput can be significantly improved if one chooses the right packing technique for the
cipher homomorphic library combination at hand. Comparing the packing technique used in the
literature is a bit problematic because of the variety of the different homomorphic libraries and
the symmetric ciphers’ design. Besides, a few papers do not explicitly discuss which packing
technique they are using in their implementation (depicted with a question mark). Nevertheless,
in Table 1, we tried to group the packing techniques into four different categories.

Packed means that one homomorphic ciphertext is filled with as many as possible symmet-
ric ciphertexts. In contrast, the remaining three packing categories split a single symmetric
ciphertext into many homomorphic ciphertexts. The idea behind is to use vector processing in
order to accelerate the homomorphic computations. This slicing can be done to various extend.
State-wise stores each state of the giving symmetric cipher in an extra homomorphic ciphertext.
Byte-Sliced, respectively Bit-Sliced, go even further. They store each byte respectively bit in
a separate homomorphic ciphertext. All three slicing techniques have in common that they put
parts of different ciphertexts adjacent to each other in a single homomorphic ciphertext. This
aims at increasing the throughput.

3.4.5 Security Parameters

Comparing different ciphers only makes sense if we compare them for the same security level.
Homomorphic encryption is a relatively new primitive, so are the methods to estimate the bit-
security of homomorphic libraries with specific parameters. Even worse, different papers used
different methods to claim the security of their homomorphic library in use. This is one of the
reasons why we found ten security levels - ranging from 42-bit to 256-bit - in the reviewed
literature. At least in the more recent literature, one can observe that the aim is to go for 80-bit
security and provide figures for 128-bit security.

3.4.6 Discussion

To sum up, for the various reasons outlined above one can not determine the best cipher for hy-
brid homomorphic encryption so far. Our goal is to change this by making the first comparable
benchmarks.

We decided to focus on two key metrics. Firstly, as every paper before, we will benchmark
the latency, i.e., the runtime of the Decomp algorithm. Latency implicitly benchmarks the

Page 20 of 31

D5.7 - Low complexity primitives v2/2

throughput, which can be calculated by the latency and the specifics of a given cipher. In
addition, we propose a new way to evaluate the cipher’s impact on the noise parameter of HE
schemes. We will do a matrix multiplication after the Decomp algorithm. The idea behind this
is two-fold. On the one hand, this approach is more independent of the HE library than previous
noise analysis. On the other hand, matrix multiplications are basics building blocks for more
complex computations like neural networks.

3.5 Benchmarks
For this deliverable, we focus on benchmarking the ciphers LowMC [3], Kreyvium [9], Rasta [17],
and FiLIP [32]. While Kreyvium, Rasta, and FiLIP are considered to be state-of-the-art in min-
imizing the AND-depth of a secure symmetric cipher, LowMC was the first cipher designed to
reduce the number of AND-gates and provides a good baseline for the benchmarks.

3.5.1 Cipher Parameters and Modes of Operation

In this section, we discuss the benchmarked ciphers, and how we used them to encrypt data
of arbitrary length. In general, we chose the instance of each cipher which has the smallest
AND-depth for κ = 128 bit computational security. In Table 3 we summarize the parameters of
the ciphers in their respective modes of operations.

LowMC LowMC is a very parameterizable blockcipher, designed to minimize the number of
AND gates required for secure encryption. In this project, we benchmark LowMC(n = 256,
k = 128, m = 63, r = 14, d = 128), the LowMC instance proposed for HHE in the original
publication [3]. To encrypt plaintext of arbitrary length, we use LowMC in the Counter (CTR)
mode of operation.

Rasta Rasta is a family of stream ciphers, in which the permutation is different for each
encrypted block. In this project, we benchmark Rasta(n = 525, r = 5) [17]. Since Rasta is a
stream cipher similar to the CTR mode of operation, no further modifications are required to
support encrypting plaintexts of arbitrary length.

Agrasta Agrasta is an aggressive instantiation of the Rasta stream cipher with no security
margin. The lack of security margin allows to further reduce the AND-depth compared to more
conservative parameter sets. In this project we benchmark Agrasta(n = 129, r = 4) [17].

Kreyvium Kreyvium is a 128 bit security variant of the low-depth stream cipher Trivium. In
Kreyvium, the AND-depth of the cipher grows with the number of required keystream bits,
which is undesired in HHE. To keep the AND-depth constant, even for larger plaintexts, we use
Kreyvium as a block cipher in the Counter (CTR) mode of operations, with the block size being
the maximum amount of keystream bits for a given AND-depth. In this project, we benchmark
Kreyvium-12 [9].

Page 21 of 31

D5.7 - Low complexity primitives v2/2

FiLIP FiLIP is another family of stream ciphers designed to minimize the number of AND
gates required for secure encryption. In contrary to Kreyvium, FiLIP’s AND depth does not
increase the more bits are encrypted. However, to better compare it with the other ciphers,
we define a block size of 64 bit and benchmark FiLIP in counter mode. In this project, we
benchmark FiLIP-1216 [32].

Table 3: Parameters of the benchmarked ciphers in their respective modes of operations
in bits.

Cipher Blocksize Keysize AND-depth

LowMC (n = 256, k = 128, m = 63, r = 14, d = 128) 256 128 14
Rasta (n = 525, r = 5) 525 525 5
Agrasta (n = 129, r = 4) 129 129 4
Kreyvium-12 42 128 12
FiLIP-1216 (n = 64) 64 16384 3

3.5.2 FHE Libraries

In this project, we benchmark HHE for two different homomorphic encryption libraries with
HE parameters which provide κ = 128 bit computational security. We discuss the two libraries
in the following:

SEAL [36] SEAL is a state-of-the-art, actively developed, homomorphic encryption library
maintained by Microsoft Research. It implements the BFV [5, 21] and CKKS [12] homomor-
phic encryption schemes. In this project, we implement and benchmark the ciphers for the BFV
cryptosystem. In BFV, plaintexts can be elements in Zt , however to support evaluations of the
benchmarked symmetric ciphers, we are limited to plaintexts in Z2. Like most modern HE
schemes [5, 21, 12, 6], BFV is based on the RLWE [30] hardness assumption, in which random
noise is added to ciphertexts for security. This noise grows for every homomorphic operation,
negligible for homomorphic additions, but significantly for homomorphic multiplications. Once
the noise becomes too large, the ciphertexts cannot be decrypted correctly anymore. Therefore,
the most limiting metric in BFV is the number of consecutive multiplications, i.e. the AND-
depth in Z2. Furthermore, multiplications are far more expensive in terms of computational
effort then additions.

TFHE [14] TFHE implements the FHE scheme of the same name (TFHE [13]). TFHE only
allows to encrypt boolean values (i.e., plaintexts are in Z2) and specializes on fast gate boot-
strapping. This basically means, that the noise in the ciphertexts is reset after each homomorphi-
cally evaluated boolean gate. As a consequence, contrary to most other modern homomorphic
encryption schemes, the AND-depth of a cipher is no relevant metric in TFHE. However, each
homomorphically evaluated gate requires the same computational effort to evaluate, thus addi-
tions are not considered free as in the BFV cryptosystem. The most relevant metric for TFHE
is, therefore, the total number of gates.

Page 22 of 31

D5.7 - Low complexity primitives v2/2

3.5.3 Benchmark Platform

We run all benchmarks on a Linux Server with a Intel Xeon E5-2669 v4 CPU (2.2 GHz, turbo-
boost up to 3.6 GHz) and 512 GB RAM available. Each of the individual benchmarks has only
access to one thread.

3.5.4 Benchmarked Applications

Hybrid Homomorphic Encryption aims to reduce the communication overhead for outsourcing
computations to a cloud. Therefore, in our benchmarks, we do not only measure and compare
the performance of the decryption circuit of each cipher under homomorphic encryption, but
also the performance of the cipher in a complete HHE use case. The use case we benchmark
is, that the server wants to compute ~r = M ·~v+~b, where ~r,~v,~b ∈ Z4

216 and M ∈ Z4×4
216 , i.e., a

4×4 matrix-vector multiplication of 16-bit integers. The matrix M, and the vector~b is, thereby
private data owned by the server, and~v is a private vector owned by the client. The client uses
HHE to send~v in encrypted form to the server, and will get~r in encrypted form as result. Since
all benchmarked ciphers operate over Z2, we have to implement binary circuits for addition and
multiplication to perform the matrix multiplication over integers in Z216 .

3.5.5 SEAL Benchmarks

In SEAL, the available noise budget, (i.e. how much further noise can be introduced until
decryption will fail) depends on the degree N of the cyclotomic reduction polynomial. N is
always a power of two and has a severe impact on the performance of the HE scheme. While
a bigger N comes the with a bigger noise budget, it exponentially increases the runtime of
homomorphic operations.

In Table 4 we present the benchmarks for the SEAL library, for homomorphically decrypt-
ing only one block, and for the complete HHE use case. For both benchmark we give timings
for homomorphically encrypting the symmetric key and homomorphically decrypting the sym-
metric ciphertexts for the smallest N providing enough noise budget for correct evaluation. For
the HHE use case we additionally give the runtime for the matrix multiplication. In Table 5 we
additionally give the remaining noise budget after encrypting the symmetric key, homomorphi-
cally decrypting the symmetric ciphertexts, and performing the matrix multiplication.

Table 4: Benchmarks for the SEAL library.

1 Block HHE use case
Cipher N Enc. Key HE decrypt N Enc. Key HE decrypt Matmul

s s s s s

LowMC 16384 2.1 507.1 32768 7.4 2 384.9 999.7
Rasta 8192 2.6 166.9 32768 31.3 2 485.6 1 019.8
Agrasta 8192 1.1 26.8 16384 3.8 136.3 384.9
Kreyvium 8192 1.2 172.6 32768 13.3 7 908.0 1 686.7
FiLIP 8192 141.1 2 533.0 16384 407.4 6 549.4 193.6

Page 23 of 31

D5.7 - Low complexity primitives v2/2

Table 5: Noise budget after each operation in the SEAL lbirary.

1 Block HHE use case
Cipher N Enc. Key HE decrypt N Enc. Key HE decrypt Matmul

bit bit bit bit bit

LowMC 16384 379 69 32768 815 489 215
Rasta 8192 165 46 32768 815 686 411
Agrasta 8192 165 82 16384 379 293 23
Kreyvium 8192 165 0 32768 815 624 350
FiLIP 8192 164 122 16384 379 333 79

3.5.6 TFHE Benchmarks

Since in TFHE the noise in the ciphertexts is reset after every homomorphic operation, we do not
have to choose any parameters for the benchmarks. In Table 6 we present the benchmarks for the
TFHE library for homomorphically decrypting only one block, and for the complete HHE use
case. We give timings for homomorphically encrypting the symmetric key, homomorphically
decrypting one block and for the complete HHE use case.

Table 6: Benchmarks for the TFHE library.

1 Block HHE use case
Cipher Enc. Key HE decrypt HE decrypt Matmul

s s s s

LowMC 0.003 6 767.4 6 574.6 119.7
Rasta 0.015 6 705.3 7 399.2 227.3
Agrasta 0.005 836.9 825.3 198.0
Kreyvium 0.005 538.7 1 028.6 192.9
FiLIP 0.490 1 678.4 1 689.8 133.6

3.5.7 Throughput

Since the ciphers we benchmark have different blocksizes, we also want to list the throughput
of the ciphers. In Table 7 we list the throughput of the ciphers for the different parameter
sets from the previous two sections. The numbers were obtained by dividing the runtime of
homomorphically decrypting one block by the blocksize.

3.5.8 Discussion

In this section, we discuss the benchmarks and some further considerations.

Ciphers for SEAL In SEAL, on of the most important metric is the AND-depth of the evalu-
ated circuit. The bigger the depth, the bigger noise budget is required, exponentially increasing

Page 24 of 31

D5.7 - Low complexity primitives v2/2

Table 7: Throughput of the ciphers.

SEAL TFHE
N Throughput N Throughput Throughput

bit/s bit/s bit/s

LowMC 16384 0.505 32768 0.108 0.038
Rasta 8192 3.146 32768 0.138 0.078
Agrasta 8192 4.813 16384 0.953 0.154
Kreyvium 8192 0.243 32768 0.010 0.078
FiLIP 8192 0.025 16384 0.005 0.038

the runtime of homomorphic operations. As can be seen in Table 4, most ciphers can be evalu-
ated with a smalle N (i.e., small noise buidget). However, if we additionally want to evaluate a
use case after decrypting ciphertexts, N has to be much larger. In terms of noise, the best choice
for HHE in SEAL is FiLIP, closely followed by Agrasta. However, due to its large key size and
small throughput, the runtime to homomorphically decrypt FiLIP ciphertexts is too hight to be
competitive, leaving Agrasta as the best choice for HHE in SEAL.

Ciphers for TFHE In TFHE, only the total gate count matters for the performance of ho-
momorphic operations. Therefore, Kreyvium intuitively looks like the best choice for HHE in
TFHE due to its low gate count. Indeed, Kreyvium has the best runtime for single block de-
cryption. However, due to its small blocksize it has a very small throughput, and depending on
the use case, Agrasta might be the better choice.

Binary Circuits In TFHE plaintexts are limited to boolean gates (i.e., plaintexts are in Z2),
therefore, every use case which includes arithmetic over Zt has to implement binary circuits.
On the other hand, plaintexts in SEAL can be arbitrary elements in Zt . However, since there is
no known transformation from HE over Z2 to HE over Zt without knowing the secret decryption
key, using the benchmarked ciphers in HHE limits the use cases in SEAL to also operate over
Z2. Therefore, a symmetric cipher over Zt would enable HHE use case with arithmetics over Zt
without the requirement of implementing binary circuits. This would drastically speed up HHE
use cases over Zt .

Further Considerations One of the most importatnt uses of HHE is outsourcing computa-
tions from small embedded devices to more powerful cloud services. The embedded devices,
thereby, only have limited computing resources, limiting their capabilities. In HHE, therefore,
homomorphically encrypting the symmetric key and encrypting plaintexts (without HE) are re-
quired to be efficient operations as well. This aspects, in general, disqualifies FiLIP-1216 as a
suitable candidate for those use cases, due to its huge key. In future work, we intend to also in-
vestigate the usefulness of FiLIP-1280, another FiLIP instance, with smaller keysize, but bigger
AND-depth.

Page 25 of 31

D5.7 - Low complexity primitives v2/2

4 Conclusion
The knowledge presented in this deliverable is a big step forward in the area of symmetric-key
primitives for privacy-preserving computations. On the one hand, we were able to get new
insights into low complexity, symmetric ciphers’ security. This will lead to more confidence
in these new cipher category and potentially improved designs. On the other hand, we created
the first benchmark framework for hybrid homomorphic encryption. Even the first round of
experiments lead to a better understanding of the different cipher’s performance. In the future,
we will extend the experiments so that we can find the best cipher for hybrid homomorphic
encryption. The goal is to submit the extended experiments to a scientific venue.

5 References

[1] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian Rech-
berger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel structures for mpc,
and more. In Kazue Sako, Steve A. Schneider, and Peter Y. A. Ryan, editors, Computer
Security - ESORICS 2019 - 24th European Symposium on Research in Computer Secu-
rity, Luxembourg, September 23-27, 2019, Proceedings, Part II, volume 11736 of Lecture
Notes in Computer Science, pages 151–171. Springer, 2019.

[2] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen.
Mimc: Efficient encryption and cryptographic hashing with minimal multiplicative com-
plexity. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASI-
ACRYPT 2016 - 22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
I, volume 10031 of Lecture Notes in Computer Science, pages 191–219, 2016.

[3] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael
Zohner. Ciphers for MPC and FHE. In EUROCRYPT (1), volume 9056 of Lecture Notes
in Computer Science, pages 430–454. Springer, 2015.

[4] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepie-
niec. Design of symmetric-key primitives for advanced cryptographic protocols. IACR
Trans. Symmetric Cryptol., 2020(3):1–45, 2020.

[5] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages
868–886. Springer, 2012.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325. ACM, 2012.

[7] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS, pages 97–106. IEEE Computer Society, 2011.

Page 26 of 31

D5.7 - Low complexity primitives v2/2

[8] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput., 43(2):831–871, 2014.

[9] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Marı́a Naya-
Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A practical solution for
efficient homomorphic-ciphertext compression. In FSE, volume 9783 of Lecture Notes in
Computer Science, pages 313–333. Springer, 2016.

[10] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient homomorphic conversion
between (ring) LWE ciphertexts. IACR Cryptology ePrint Archive, 2020:15, 2020.

[11] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint,
Mehdi Tibouchi, and Aaram Yun. Batch fully homomorphic encryption over the integers.
In EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 315–335.
Springer, 2013.

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption
for arithmetic of approximate numbers. In ASIACRYPT (1), volume 10624 of Lecture
Notes in Computer Science, pages 409–437. Springer, 2017.

[13] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In ASIACRYPT (1),
volume 10031 of Lecture Notes in Computer Science, pages 3–33, 2016.

[14] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast
fully homomorphic encryption library, August 2016. https://tfhe.github.io/tfhe/.

[15] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages
41–50. IEEE, 1995.

[16] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully ho-
momorphic encryption over the integers. In Public Key Cryptography, volume 8383 of
Lecture Notes in Computer Science, pages 311–328. Springer, 2014.

[17] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gregor Le-
ander, Eik List, Florian Mendel, and Christian Rechberger. Rasta: A cipher with low
anddepth and few ands per bit. In CRYPTO (1), volume 10991 of Lecture Notes in Com-
puter Science, pages 662–692. Springer, 2018.

[18] Yarkin Doröz, Yin Hu, and Berk Sunar. Homomorphic AES evaluation using the modified
LTV scheme. Des. Codes Cryptogr., 80(2):333–358, 2016.

[19] Yarkin Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. Toward practical
homomorphic evaluation of block ciphers using prince. In Financial Cryptography Work-
shops, volume 8438 of Lecture Notes in Computer Science, pages 208–220. Springer,
2014.

Page 27 of 31

D5.7 - Low complexity primitives v2/2

[20] Maria Eichlseder, Lorenzo Grassi, Reinhard Lüftenegger, Morten Øygarden, Christian
Rechberger, Markus Schofnegger, and Qingju Wang. An algebraic attack on ciphers
with low-degree round functions: Application to full mimc. IACR Cryptol. ePrint Arch.,
2020:182, 2020.

[21] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryp-
tion. IACR Cryptology ePrint Archive, 2012:144, 2012.

[22] Pierre-Alain Fouque, Benjamin Hadjibeyli, and Paul Kirchner. Homomorphic evaluation
of lattice-based symmetric encryption schemes. In COCOON, volume 9797 of Lecture
Notes in Computer Science, pages 269–280. Springer, 2016.

[23] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D. Smith.
Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge
proofs. J. Cryptology, 28(4):820–843, 2015.

[24] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES
circuit. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 850–867.
Springer, 2012.

[25] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus
Schofnegger. Poseidon: A new hash function for zero-knowledge proof systems. Cryp-
tology ePrint Archive, Report 2019/458, 2019. https://eprint.iacr.org/2019/458.

[26] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru, and Markus
Schofnegger. On a generalization of substitution-permutation networks: The HADES
design strategy. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EU-
ROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II,
volume 12106 of Lecture Notes in Computer Science, pages 674–704. Springer, 2020.

[27] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P. Smart.
Mpc-friendly symmetric key primitives. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 430–443. ACM, 2016.

[28] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition.
CRC Press, 2014.

[29] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryption
schemes FV and YASHE. In AFRICACRYPT, volume 8469 of Lecture Notes in Computer
Science, pages 318–335. Springer, 2014.

[30] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science,
pages 1–23. Springer, 2010.

Page 28 of 31

https://eprint.iacr.org/2019/458

D5.7 - Low complexity primitives v2/2

[31] Pierrick Méaux. Hybrid fully homomorphic framework. (Chiffrement complètement ho-
momorphe hybride). PhD thesis, PSL Research University, France, 2017.

[32] Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier Standaert. Im-
proved filter permutators for efficient FHE: better instances and implementations. In IN-
DOCRYPT, volume 11898 of Lecture Notes in Computer Science, pages 68–91. Springer,
2019.

[33] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet. To-
wards stream ciphers for efficient FHE with low-noise ciphertexts. In EUROCRYPT (1),
volume 9665 of Lecture Notes in Computer Science, pages 311–343. Springer, 2016.

[34] Silvia Mella and Ruggero Susella. On the homomorphic computation of symmetric cryp-
tographic primitives. In IMA Int. Conf, volume 8308 of Lecture Notes in Computer Sci-
ence, pages 28–44. Springer, 2013.

[35] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can homomorphic en-
cryption be practical? In CCSW, pages 113–124. ACM, 2011.

[36] Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL, April 2020. Mi-
crosoft Research, Redmond, WA.

Page 29 of 31

https://github.com/Microsoft/SEAL

D5.7 - Low complexity primitives v2/2

A MiMC Attack

Page 30 of 31

An Algebraic Attack on Ciphers with
Low-Degree Round Functions: Application to

Full MiMC
(Full Version)

Maria Eichlseder1, Lorenzo Grassi1,2, Reinhard Lüftenegger1,
Morten Øygarden3, Christian Rechberger1, Markus Schofnegger1, and

Qingju Wang4

1 IAIK, Graz University of Technology (Austria)
2 Digital Security Group, Radboud University, Nijmegen (The Netherlands)

3 Simula UiB (Norway)
4 SnT, University of Luxembourg (Luxembourg)

firstname.lastname@iaik.tugraz.at
lgrassi@science.ru.nl

morten.oygarden@simula.no
qingju.wang@uni.lu

Abstract. Algebraically simple PRFs, ciphers, or cryptographic hash
functions are becoming increasingly popular, for example due to their
attractive properties for MPC and new proof systems (SNARKs, STARKs,
among many others).
In this paper, we focus on the algebraically simple construction MiMC,
which became an attractive cryptanalytic target due to its simplicity,
but also due to its use as a baseline in a competition for more recent
algorithms exploring this design space.
For the first time, we are able to describe key-recovery attacks on all
full-round versions of MiMC over F2n , requiring half the code book. In
the chosen-ciphertext scenario, recovering the key from this data for the
n-bit full version of MiMC takes the equivalent of less than 2n−log2(n)+1

calls to MiMC and negligible amounts of memory.
The attack procedure is a generalization of higher-order differential crypt-
analysis, and it is based on two main ingredients. First, we present a
higher-order distinguisher which exploits the fact that the algebraic degree
of MiMC grows significantly slower than originally believed. Secondly, we
describe an approach to turn this distinguisher into a key-recovery attack
without guessing the full subkey. Finally, we show that approximately
dlog3(2 ·R)e more rounds (where R = dn · log3(2)e is the current number
of rounds of MiMC-n/n) can be necessary and sufficient to restore the
security against the key-recovery attack presented here.
The attack has been practically verified on toy versions of MiMC. Note
that our attack does not affect the security of MiMC over prime fields.

Keywords: Algebraic attack · MiMC · Higher-order differential

D5.7 - Low complexity primitives v2/2

Page 31 of 31

	Introduction
	Data Valuation Component
	Homomorphic Encryption
	Hybrid Homomorphic Encryption
	Benchmark Platform
	Road-map

	Research on Low Complexity Symmetric Key Primitives
	Hybrid Homomorphic Encryption: Guideline
	Motivation and Contribution
	Review: Formal Definitions
	Preliminaries and Notation
	Literature
	Conclusion

	Formal Definition
	Preliminaries
	Hybrid Homomorphic Encryption
	Relation between HHE and KEM-DEM paradigm
	Security

	Review: Benchmarks
	Metrics
	Ciphers
	Homomorphic Encryption Libraries
	Packing
	Security Parameters
	Discussion

	Benchmarks
	Cipher Parameters and Modes of Operation
	FHE Libraries
	Benchmark Platform
	Benchmarked Applications
	SEAL Benchmarks
	TFHE Benchmarks
	Throughput
	Discussion

	Conclusion
	References
	MiMC Attack

